Spaces:
Running
Running
File size: 10,673 Bytes
af60cba a42280a af60cba a4da6d3 af60cba 8bacbbf f30e96e 8bacbbf f30e96e 8bacbbf a4da6d3 8bacbbf a4da6d3 8bacbbf a4da6d3 8bacbbf a4da6d3 a42280a a4da6d3 a42280a a4da6d3 8bacbbf a42280a a4da6d3 a42280a af60cba a4da6d3 af60cba a4da6d3 8bacbbf af60cba a4da6d3 af60cba 8bacbbf af60cba a42280a a4da6d3 af60cba 8bacbbf af60cba 8bacbbf af60cba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
# modules/ai_model.py
import torch
import base64
import requests
from io import BytesIO
import os
from huggingface_hub import login
from PIL import Image
from transformers import AutoProcessor, Gemma3nForConditionalGeneration
from utils.logger import log
from typing import Union, Tuple
class AIModel:
def __init__(self, model_name: str = "google/gemma-3n-e2b-it"):
self.model_name = model_name
self.model = None
self.processor = None
# 设置缓存目录
self._setup_cache_dirs()
self._initialize_model()
def _setup_cache_dirs(self):
"""设置缓存目录"""
cache_dir = "/app/.cache/huggingface"
os.makedirs(cache_dir, exist_ok=True)
# 设置环境变量
os.environ["HF_HOME"] = cache_dir
os.environ["TRANSFORMERS_CACHE"] = cache_dir
os.environ["HF_DATASETS_CACHE"] = cache_dir
log.info(f"设置缓存目录: {cache_dir}")
def _authenticate_hf(self):
"""HuggingFace认证"""
try:
# 检查所有可能的环境变量
assitant_token = os.getenv("Assitant_tocken")
hf_token = os.getenv("HUGGINGFACE_HUB_TOKEN")
hf_token_alt = os.getenv("HF_TOKEN")
log.info("=== 环境变量调试 ===")
log.info(f"Assitant_tocken: {'存在' if assitant_token else '不存在'}")
log.info(f"HUGGINGFACE_HUB_TOKEN: {'存在' if hf_token else '不存在'}")
log.info(f"HF_TOKEN: {'存在' if hf_token_alt else '不存在'}")
# 使用找到的token
token_to_use = assitant_token or hf_token or hf_token_alt
if token_to_use:
log.info(f"使用token: {token_to_use[:10]}...")
# 设置缓存目录用于认证
cache_dir = "/app/.cache/huggingface"
login(token=token_to_use, add_to_git_credential=False)
log.info("✅ HuggingFace 认证成功")
return token_to_use
else:
log.error("❌ 未找到任何有效的 HuggingFace token")
return None
except Exception as e:
log.error(f"❌ HuggingFace 认证失败: {e}")
return None
def _initialize_model(self):
"""初始化Gemma模型"""
try:
log.info(f"正在加载模型: {self.model_name}")
# 先进行认证并获取token
token = self._authenticate_hf()
if not token:
log.error("❌ 无法获取有效token,模型加载失败")
self.model = None
self.processor = None
return
# 设置缓存目录
cache_dir = "/app/.cache/huggingface"
self.model = Gemma3nForConditionalGeneration.from_pretrained(
self.model_name,
device_map="auto",
torch_dtype=torch.bfloat16,
trust_remote_code=True,
token=token,
cache_dir=cache_dir, # 明确指定缓存目录
use_auth_token=token
).eval()
self.processor = AutoProcessor.from_pretrained(
self.model_name,
trust_remote_code=True,
token=token,
cache_dir=cache_dir, # 明确指定缓存目录
use_auth_token=token
)
log.info("✅ Gemma AI 模型初始化成功")
except Exception as e:
log.error(f"❌ Gemma AI 模型初始化失败: {e}", exc_info=True)
self.model = None
self.processor = None
def is_available(self) -> bool:
"""检查模型是否可用"""
return self.model is not None and self.processor is not None
def detect_input_type(self, input_data: str) -> str:
"""检测输入类型:图片/音频/文字"""
if isinstance(input_data, str):
# 检查是否为图片URL或路径
if (input_data.startswith(("http://", "https://")) and
any(input_data.lower().endswith(ext) for ext in [".png", ".jpg", ".jpeg", ".gif", ".bmp", ".webp"])):
return "image"
elif input_data.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp", ".webp")):
return "image"
# 检查是否为音频URL或路径
elif (input_data.startswith(("http://", "https://")) and
any(input_data.lower().endswith(ext) for ext in [".wav", ".mp3", ".m4a", ".ogg"])):
return "audio"
elif input_data.endswith((".wav", ".mp3", ".m4a", ".ogg")):
return "audio"
# 检查是否为base64编码的图片
elif input_data.startswith("data:image/"):
return "image"
return "text"
def format_input(self, input_type: str, raw_input: str) -> Tuple[str, Union[str, Image.Image, None]]:
"""格式化输入数据"""
formatted_data = None
processed_text = raw_input
if input_type == "image":
try:
if raw_input.startswith("data:image/"):
# 处理base64编码的图片
header, encoded = raw_input.split(",", 1)
image_data = base64.b64decode(encoded)
image = Image.open(BytesIO(image_data)).convert("RGB")
elif raw_input.startswith(("http://", "https://")):
# 处理图片URL
response = requests.get(raw_input, timeout=10)
response.raise_for_status()
image = Image.open(BytesIO(response.content)).convert("RGB")
else:
# 处理本地图片路径
image = Image.open(raw_input).convert("RGB")
formatted_data = image
processed_text = "请描述这张图片,并基于图片内容提供旅游建议。"
log.info("✅ 图片加载成功")
except Exception as e:
log.error(f"❌ 图片加载失败: {e}")
return "text", f"图片加载失败,请检查图片路径或URL。原始输入: {raw_input}"
elif input_type == "audio":
# 音频处理逻辑(如果需要的话,目前先返回提示)
log.warning("⚠️ 音频处理功能暂未实现")
processed_text = "抱歉,音频输入功能正在开发中。请使用文字描述您的需求。"
elif input_type == "text":
# 文字输入直接使用
formatted_data = None
processed_text = raw_input
return input_type, formatted_data, processed_text
def run_inference(self, input_type: str, formatted_input: Union[str, Image.Image], prompt: str) -> str:
"""执行模型推理"""
try:
if input_type == "image" and isinstance(formatted_input, Image.Image):
# 图片输入处理
image_token = self.processor.tokenizer.image_token
if image_token not in prompt:
prompt = f"{image_token}\n{prompt}"
inputs = self.processor(
text=prompt,
images=formatted_input,
return_tensors="pt"
).to(self.model.device, dtype=torch.bfloat16)
else:
# 纯文本输入处理
inputs = self.processor(
text=prompt,
return_tensors="pt"
).to(self.model.device, dtype=torch.bfloat16)
# 生成响应
with torch.inference_mode():
outputs = self.model.generate(
**inputs,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.9,
pad_token_id=self.processor.tokenizer.eos_token_id
)
# 解码输出
decoded = self.processor.tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
# 清理输出,移除输入的prompt部分
if prompt in decoded:
decoded = decoded.replace(prompt, "").strip()
return decoded
except Exception as e:
log.error(f"❌ 模型推理失败: {e}", exc_info=True)
return "抱歉,我在处理您的请求时遇到了技术问题,请稍后再试。"
def generate(self, user_input: str, context: str = "") -> str:
"""主要的生成方法 - 支持多模态输入"""
if not self.is_available():
return "抱歉,AI 模型当前不可用,请稍后再试。"
try:
# 1. 检测输入类型
input_type = self.detect_input_type(user_input)
log.info(f"检测到输入类型: {input_type}")
# 2. 格式化输入
input_type, formatted_data, processed_text = self.format_input(input_type, user_input)
# 3. 构建prompt
if context:
prompt = (
f"你是一个专业的旅游助手。请基于以下背景信息,用中文友好地回答用户的问题。\n\n"
f"--- 背景信息 ---\n{context}\n\n"
f"--- 用户问题 ---\n{processed_text}\n\n"
f"请提供专业、实用的旅游建议:"
)
else:
prompt = (
f"你是一个专业的旅游助手。请用中文友好地回答用户的问题。\n\n"
f"用户问题:{processed_text}\n\n"
f"请提供专业、实用的旅游建议:"
)
# 4. 执行推理
if input_type == "image" and formatted_data is not None:
return self.run_inference("image", formatted_data, prompt)
else:
return self.run_inference("text", processed_text, prompt)
except Exception as e:
log.error(f"❌ 生成回复时发生错误: {e}", exc_info=True)
return "抱歉,我在思考时遇到了点麻烦,请稍后再试。" |