Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,15 @@
|
|
| 1 |
import numpy as np
|
| 2 |
import streamlit as st
|
| 3 |
from PIL import Image
|
| 4 |
-
import
|
|
|
|
|
|
|
| 5 |
from utils import preprocess_image
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
# Initialize labels and model
|
| 10 |
labels = ['cardboard', 'glass', 'metal', 'paper', 'plastic', 'trash']
|
| 11 |
-
model =
|
|
|
|
| 12 |
|
| 13 |
# Customized Streamlit layout
|
| 14 |
st.set_page_config(
|
|
@@ -86,7 +87,7 @@ st.title("EcoIdentify by EcoClim Solutions")
|
|
| 86 |
st.header("Upload a waste image to find its category")
|
| 87 |
|
| 88 |
# Note
|
| 89 |
-
st.markdown("* Please note that our dataset is trained primarily with images that contain a white background.
|
| 90 |
|
| 91 |
# Image upload section
|
| 92 |
opt = st.selectbox("How do you want to upload the image for classification?", ("Please Select", "Upload image from device"))
|
|
@@ -102,8 +103,14 @@ try:
|
|
| 102 |
if image is not None:
|
| 103 |
st.image(image, width=256, caption='Uploaded Image')
|
| 104 |
if st.button('Predict'):
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
except Exception as e:
|
| 108 |
-
st.error(f"An error occurred: {e}.
|
| 109 |
-
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import streamlit as st
|
| 3 |
from PIL import Image
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torchvision.transforms as transforms
|
| 7 |
from utils import preprocess_image
|
| 8 |
|
|
|
|
|
|
|
| 9 |
# Initialize labels and model
|
| 10 |
labels = ['cardboard', 'glass', 'metal', 'paper', 'plastic', 'trash']
|
| 11 |
+
model = torch.load('classify_model.pth')
|
| 12 |
+
model.eval()
|
| 13 |
|
| 14 |
# Customized Streamlit layout
|
| 15 |
st.set_page_config(
|
|
|
|
| 87 |
st.header("Upload a waste image to find its category")
|
| 88 |
|
| 89 |
# Note
|
| 90 |
+
st.markdown("* Please note that our dataset is trained primarily with images that contain a white background. Therefore, images with white background would produce maximum accuracy *")
|
| 91 |
|
| 92 |
# Image upload section
|
| 93 |
opt = st.selectbox("How do you want to upload the image for classification?", ("Please Select", "Upload image from device"))
|
|
|
|
| 103 |
if image is not None:
|
| 104 |
st.image(image, width=256, caption='Uploaded Image')
|
| 105 |
if st.button('Predict'):
|
| 106 |
+
transform = transforms.Compose([
|
| 107 |
+
transforms.Resize((256, 256)),
|
| 108 |
+
transforms.ToTensor(),
|
| 109 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 110 |
+
])
|
| 111 |
+
image = transform(image).unsqueeze(0)
|
| 112 |
+
with torch.no_grad():
|
| 113 |
+
prediction = model(image)
|
| 114 |
+
st.success(f'Prediction: {labels[torch.argmax(prediction, dim=1).item()]}')
|
| 115 |
except Exception as e:
|
| 116 |
+
st.error(f"An error occurred: {e}. Please contact us EcoClim Solutions at EcoClimSolutions.wordpress.com.")
|
|
|