Spaces:
Running
Running
Commit
·
aee66d8
1
Parent(s):
2cc8d92
Update utils.py
Browse files
utils.py
CHANGED
|
@@ -8,36 +8,34 @@ from PIL import Image
|
|
| 8 |
|
| 9 |
def gen_labels():
|
| 10 |
train = 'Dataset/Train'
|
| 11 |
-
train_generator = ImageDataGenerator(rescale
|
| 12 |
|
| 13 |
train_generator = train_generator.flow_from_directory(train,
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
labels =
|
| 18 |
-
labels = dict((v,k) for k,v in labels.items())
|
| 19 |
|
| 20 |
return labels
|
| 21 |
|
| 22 |
def preprocess(image):
|
| 23 |
image = np.array(image.resize((256, 256), Image.LANCZOS))
|
| 24 |
-
image =
|
| 25 |
-
image = np.array(image) / 255.0
|
| 26 |
-
|
| 27 |
return image
|
| 28 |
|
| 29 |
def model_arc():
|
| 30 |
model = Sequential()
|
| 31 |
|
| 32 |
# Convolution blocks
|
| 33 |
-
model.add(Conv2D(32, kernel_size=(3,3), padding='same', input_shape=(256, 256, 3), activation='relu'))
|
| 34 |
-
model.add(MaxPooling2D(pool_size=2))
|
| 35 |
|
| 36 |
-
model.add(Conv2D(64, kernel_size=(3,3), padding='same', activation='relu'))
|
| 37 |
-
model.add(MaxPooling2D(pool_size=2))
|
| 38 |
|
| 39 |
-
model.add(Conv2D(32, kernel_size=(3,3), padding='same', activation='relu'))
|
| 40 |
-
model.add(MaxPooling2D(pool_size=2))
|
| 41 |
|
| 42 |
# Classification layers
|
| 43 |
model.add(Flatten())
|
|
|
|
| 8 |
|
| 9 |
def gen_labels():
|
| 10 |
train = 'Dataset/Train'
|
| 11 |
+
train_generator = ImageDataGenerator(rescale=1/255)
|
| 12 |
|
| 13 |
train_generator = train_generator.flow_from_directory(train,
|
| 14 |
+
target_size=(256, 256),
|
| 15 |
+
batch_size=32,
|
| 16 |
+
class_mode='sparse')
|
| 17 |
+
labels = train_generator.class_indices
|
| 18 |
+
labels = dict((v, k) for k, v in labels.items())
|
| 19 |
|
| 20 |
return labels
|
| 21 |
|
| 22 |
def preprocess(image):
|
| 23 |
image = np.array(image.resize((256, 256), Image.LANCZOS))
|
| 24 |
+
image = image.astype('float32') / 255.0
|
|
|
|
|
|
|
| 25 |
return image
|
| 26 |
|
| 27 |
def model_arc():
|
| 28 |
model = Sequential()
|
| 29 |
|
| 30 |
# Convolution blocks
|
| 31 |
+
model.add(Conv2D(32, kernel_size=(3, 3), padding='same', input_shape=(256, 256, 3), activation='relu'))
|
| 32 |
+
model.add(MaxPooling2D(pool_size=2))
|
| 33 |
|
| 34 |
+
model.add(Conv2D(64, kernel_size=(3, 3), padding='same', activation='relu'))
|
| 35 |
+
model.add(MaxPooling2D(pool_size=2))
|
| 36 |
|
| 37 |
+
model.add(Conv2D(32, kernel_size=(3, 3), padding='same', activation='relu'))
|
| 38 |
+
model.add(MaxPooling2D(pool_size=2))
|
| 39 |
|
| 40 |
# Classification layers
|
| 41 |
model.add(Flatten())
|