Spaces:
Running
Running
| from PIL import Image | |
| import numpy as np | |
| labels = ['cardboard', 'glass', 'metal', 'paper', 'plastic', 'trash'] | |
| def preprocess_image(img_path): | |
| img = Image.open(img_path) | |
| img = img.resize((256, 256)) | |
| img_array = np.array(img) | |
| return img_array | |
| # Function to classify the garbage | |
| def classify_garbage(img_path, model): | |
| processed_img = preprocess_image(img_path) | |
| prediction = model.predict(processed_img) | |
| class_labels = ["cardboard", "glass", "metal", "paper", "plastic", "trash"] | |
| predicted_class = np.argmax(prediction, axis=1)[0] | |
| classification_result = class_labels[predicted_class] | |
| # Get the confidence (probability) of the predicted class | |
| confidence = prediction[0][predicted_class] * 100 # Convert probability to percentage | |
| return classification_result, confidence |