Spaces:
Runtime error
Runtime error
| from typing import * | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| def wrap_module_with_gradient_checkpointing(module: nn.Module): | |
| from torch.utils.checkpoint import checkpoint | |
| class _CheckpointingWrapper(module.__class__): | |
| _restore_cls = module.__class__ | |
| def forward(self, *args, **kwargs): | |
| return checkpoint(super().forward, *args, use_reentrant=False, **kwargs) | |
| module.__class__ = _CheckpointingWrapper | |
| return module | |
| def unwrap_module_with_gradient_checkpointing(module: nn.Module): | |
| module.__class__ = module.__class__._restore_cls | |
| def wrap_dinov2_attention_with_sdpa(module: nn.Module): | |
| assert torch.__version__ >= '2.0', "SDPA requires PyTorch 2.0 or later" | |
| class _AttentionWrapper(module.__class__): | |
| def forward(self, x: torch.Tensor, attn_bias=None) -> torch.Tensor: | |
| B, N, C = x.shape | |
| qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) # (3, B, H, N, C // H) | |
| q, k, v = torch.unbind(qkv, 0) # (B, H, N, C // H) | |
| x = F.scaled_dot_product_attention(q, k, v, attn_bias) | |
| x = x.permute(0, 2, 1, 3).reshape(B, N, C) | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| module.__class__ = _AttentionWrapper | |
| return module |