Spaces:
Runtime error
Runtime error
| import os | |
| os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1' | |
| from pathlib import Path | |
| import sys | |
| sys.path.append(str(Path(__file__).absolute().parents[1])) | |
| from typing import * | |
| import itertools | |
| import json | |
| import warnings | |
| import cv2 | |
| import numpy as np | |
| from numpy import ndarray | |
| import torch | |
| from PIL import Image | |
| from tqdm import tqdm, trange | |
| import trimesh | |
| import trimesh.visual | |
| import click | |
| from scipy.sparse import csr_array, hstack, vstack | |
| from scipy.ndimage import convolve | |
| from scipy.sparse.linalg import lsmr | |
| from moge.model import MoGeModel | |
| from moge.utils.io import save_glb, save_ply | |
| from moge.utils.vis import colorize_depth | |
| import utils3d | |
| def get_panorama_cameras(): | |
| vertices, _ = utils3d.numpy.icosahedron() | |
| intrinsics = utils3d.numpy.intrinsics_from_fov(fov_x=np.deg2rad(90), fov_y=np.deg2rad(90)) | |
| extrinsics = utils3d.numpy.extrinsics_look_at([0, 0, 0], vertices, [0, 0, 1]).astype(np.float32) | |
| return extrinsics, [intrinsics] * len(vertices) | |
| def spherical_uv_to_directions(uv: np.ndarray): | |
| theta, phi = (1 - uv[..., 0]) * (2 * np.pi), uv[..., 1] * np.pi | |
| directions = np.stack([np.sin(phi) * np.cos(theta), np.sin(phi) * np.sin(theta), np.cos(phi)], axis=-1) | |
| return directions | |
| def directions_to_spherical_uv(directions: np.ndarray): | |
| directions = directions / np.linalg.norm(directions, axis=-1, keepdims=True) | |
| u = 1 - np.arctan2(directions[..., 1], directions[..., 0]) / (2 * np.pi) % 1.0 | |
| v = np.arccos(directions[..., 2]) / np.pi | |
| return np.stack([u, v], axis=-1) | |
| def split_panorama_image(image: np.ndarray, extrinsics: np.ndarray, intrinsics: np.ndarray, resolution: int): | |
| height, width = image.shape[:2] | |
| uv = utils3d.numpy.image_uv(width=resolution, height=resolution) | |
| splitted_images = [] | |
| for i in range(len(extrinsics)): | |
| spherical_uv = directions_to_spherical_uv(utils3d.numpy.unproject_cv(uv, extrinsics=extrinsics[i], intrinsics=intrinsics[i])) | |
| pixels = utils3d.numpy.uv_to_pixel(spherical_uv, width=width, height=height).astype(np.float32) | |
| splitted_image = cv2.remap(image, pixels[..., 0], pixels[..., 1], interpolation=cv2.INTER_LINEAR) | |
| splitted_images.append(splitted_image) | |
| return splitted_images | |
| def poisson_equation(width: int, height: int, wrap_x: bool = False, wrap_y: bool = False) -> Tuple[csr_array, ndarray]: | |
| grid_index = np.arange(height * width).reshape(height, width) | |
| grid_index = np.pad(grid_index, ((0, 0), (1, 1)), mode='wrap' if wrap_x else 'edge') | |
| grid_index = np.pad(grid_index, ((1, 1), (0, 0)), mode='wrap' if wrap_y else 'edge') | |
| data = np.array([[-4, 1, 1, 1, 1]], dtype=np.float32).repeat(height * width, axis=0).reshape(-1) | |
| indices = np.stack([ | |
| grid_index[1:-1, 1:-1], | |
| grid_index[:-2, 1:-1], # up | |
| grid_index[2:, 1:-1], # down | |
| grid_index[1:-1, :-2], # left | |
| grid_index[1:-1, 2:] # right | |
| ], axis=-1).reshape(-1) | |
| indptr = np.arange(0, height * width * 5 + 1, 5) | |
| A = csr_array((data, indices, indptr), shape=(height * width, height * width)) | |
| return A | |
| def grad_equation(width: int, height: int, wrap_x: bool = False, wrap_y: bool = False) -> Tuple[csr_array, np.ndarray]: | |
| grid_index = np.arange(width * height).reshape(height, width) | |
| if wrap_x: | |
| grid_index = np.pad(grid_index, ((0, 0), (0, 1)), mode='wrap') | |
| if wrap_y: | |
| grid_index = np.pad(grid_index, ((0, 1), (0, 0)), mode='wrap') | |
| data = np.concatenate([ | |
| np.concatenate([ | |
| np.ones((grid_index.shape[0], grid_index.shape[1] - 1), dtype=np.float32).reshape(-1, 1), # x[i,j] | |
| -np.ones((grid_index.shape[0], grid_index.shape[1] - 1), dtype=np.float32).reshape(-1, 1), # x[i,j-1] | |
| ], axis=1).reshape(-1), | |
| np.concatenate([ | |
| np.ones((grid_index.shape[0] - 1, grid_index.shape[1]), dtype=np.float32).reshape(-1, 1), # x[i,j] | |
| -np.ones((grid_index.shape[0] - 1, grid_index.shape[1]), dtype=np.float32).reshape(-1, 1), # x[i-1,j] | |
| ], axis=1).reshape(-1), | |
| ]) | |
| indices = np.concatenate([ | |
| np.concatenate([ | |
| grid_index[:, :-1].reshape(-1, 1), | |
| grid_index[:, 1:].reshape(-1, 1), | |
| ], axis=1).reshape(-1), | |
| np.concatenate([ | |
| grid_index[:-1, :].reshape(-1, 1), | |
| grid_index[1:, :].reshape(-1, 1), | |
| ], axis=1).reshape(-1), | |
| ]) | |
| indptr = np.arange(0, grid_index.shape[0] * (grid_index.shape[1] - 1) * 2 + (grid_index.shape[0] - 1) * grid_index.shape[1] * 2 + 1, 2) | |
| A = csr_array((data, indices, indptr), shape=(grid_index.shape[0] * (grid_index.shape[1] - 1) + (grid_index.shape[0] - 1) * grid_index.shape[1], height * width)) | |
| return A | |
| def merge_panorama_depth(width: int, height: int, distance_maps: List[np.ndarray], pred_masks: List[np.ndarray], extrinsics: List[np.ndarray], intrinsics: List[np.ndarray]): | |
| if max(width, height) > 256: | |
| panorama_depth_init, _ = merge_panorama_depth(width // 2, height // 2, distance_maps, pred_masks, extrinsics, intrinsics) | |
| panorama_depth_init = cv2.resize(panorama_depth_init, (width, height), cv2.INTER_LINEAR) | |
| else: | |
| panorama_depth_init = None | |
| uv = utils3d.numpy.image_uv(width=width, height=height) | |
| spherical_directions = spherical_uv_to_directions(uv) | |
| # Warp each view to the panorama | |
| panorama_log_distance_grad_maps, panorama_grad_masks = [], [] | |
| panorama_log_distance_laplacian_maps, panorama_laplacian_masks = [], [] | |
| panorama_pred_masks = [] | |
| for i in range(len(distance_maps)): | |
| projected_uv, projected_depth = utils3d.numpy.project_cv(spherical_directions, extrinsics=extrinsics[i], intrinsics=intrinsics[i]) | |
| projection_valid_mask = (projected_depth > 0) & (projected_uv > 0).all(axis=-1) & (projected_uv < 1).all(axis=-1) | |
| projected_pixels = utils3d.numpy.uv_to_pixel(np.clip(projected_uv, 0, 1), width=distance_maps[i].shape[1], height=distance_maps[i].shape[0]).astype(np.float32) | |
| log_splitted_distance = np.log(distance_maps[i]) | |
| panorama_log_distance_map = np.where(projection_valid_mask, cv2.remap(log_splitted_distance, projected_pixels[..., 0], projected_pixels[..., 1], cv2.INTER_LINEAR, borderMode=cv2.BORDER_REPLICATE), 0) | |
| panorama_pred_mask = projection_valid_mask & (cv2.remap(pred_masks[i].astype(np.uint8), projected_pixels[..., 0], projected_pixels[..., 1], cv2.INTER_NEAREST, borderMode=cv2.BORDER_REPLICATE) > 0) | |
| # calculate gradient map | |
| padded = np.pad(panorama_log_distance_map, ((0, 0), (0, 1)), mode='wrap') | |
| grad_x, grad_y = padded[:, :-1] - padded[:, 1:], padded[:-1, :] - padded[1:, :] | |
| padded = np.pad(panorama_pred_mask, ((0, 0), (0, 1)), mode='wrap') | |
| mask_x, mask_y = padded[:, :-1] & padded[:, 1:], padded[:-1, :] & padded[1:, :] | |
| panorama_log_distance_grad_maps.append((grad_x, grad_y)) | |
| panorama_grad_masks.append((mask_x, mask_y)) | |
| # calculate laplacian map | |
| padded = np.pad(panorama_log_distance_map, ((1, 1), (0, 0)), mode='edge') | |
| padded = np.pad(padded, ((0, 0), (1, 1)), mode='wrap') | |
| laplacian = convolve(padded, np.array([[0, 1, 0], [1, -4, 1], [0, 1, 0]], dtype=np.float32))[1:-1, 1:-1] | |
| padded = np.pad(panorama_pred_mask, ((1, 1), (0, 0)), mode='edge') | |
| padded = np.pad(padded, ((0, 0), (1, 1)), mode='wrap') | |
| mask = convolve(padded.astype(np.uint8), np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype=np.uint8))[1:-1, 1:-1] == 5 | |
| panorama_log_distance_laplacian_maps.append(laplacian) | |
| panorama_laplacian_masks.append(mask) | |
| panorama_pred_masks.append(panorama_pred_mask) | |
| panorama_log_distance_grad_x = np.stack([grad_map[0] for grad_map in panorama_log_distance_grad_maps], axis=0) | |
| panorama_log_distance_grad_y = np.stack([grad_map[1] for grad_map in panorama_log_distance_grad_maps], axis=0) | |
| panorama_grad_mask_x = np.stack([mask_map[0] for mask_map in panorama_grad_masks], axis=0) | |
| panorama_grad_mask_y = np.stack([mask_map[1] for mask_map in panorama_grad_masks], axis=0) | |
| panorama_log_distance_grad_x = np.sum(panorama_log_distance_grad_x * panorama_grad_mask_x, axis=0) / np.sum(panorama_grad_mask_x, axis=0).clip(1e-3) | |
| panorama_log_distance_grad_y = np.sum(panorama_log_distance_grad_y * panorama_grad_mask_y, axis=0) / np.sum(panorama_grad_mask_y, axis=0).clip(1e-3) | |
| panorama_laplacian_maps = np.stack(panorama_log_distance_laplacian_maps, axis=0) | |
| panorama_laplacian_masks = np.stack(panorama_laplacian_masks, axis=0) | |
| panorama_laplacian_map = np.sum(panorama_laplacian_maps * panorama_laplacian_masks, axis=0) / np.sum(panorama_laplacian_masks, axis=0).clip(1e-3) | |
| grad_x_mask = np.any(panorama_grad_mask_x, axis=0).reshape(-1) | |
| grad_y_mask = np.any(panorama_grad_mask_y, axis=0).reshape(-1) | |
| grad_mask = np.concatenate([grad_x_mask, grad_y_mask]) | |
| laplacian_mask = np.any(panorama_laplacian_masks, axis=0).reshape(-1) | |
| # Solve overdetermined system | |
| A = vstack([ | |
| grad_equation(width, height, wrap_x=True, wrap_y=False)[grad_mask], | |
| poisson_equation(width, height, wrap_x=True, wrap_y=False)[laplacian_mask], | |
| ]) | |
| b = np.concatenate([ | |
| panorama_log_distance_grad_x.reshape(-1)[grad_x_mask], | |
| panorama_log_distance_grad_y.reshape(-1)[grad_y_mask], | |
| panorama_laplacian_map.reshape(-1)[laplacian_mask] | |
| ]) | |
| x, *_ = lsmr( | |
| A, b, | |
| atol=1e-5, btol=1e-5, | |
| x0=np.log(panorama_depth_init).reshape(-1) if panorama_depth_init is not None else None, | |
| show=False, | |
| ) | |
| panorama_depth = np.exp(x).reshape(height, width).astype(np.float32) | |
| panorama_mask = np.any(panorama_pred_masks, axis=0) | |
| return panorama_depth, panorama_mask | |
| def main( | |
| input_path: str, | |
| output_path: str, | |
| pretrained_model_name_or_path: str, | |
| device_name: str, | |
| resize_to: int, | |
| resolution_level: int, | |
| threshold: float, | |
| batch_size: int, | |
| save_splitted: bool, | |
| save_maps_: bool, | |
| save_glb_: bool, | |
| save_ply_: bool, | |
| show: bool, | |
| ): | |
| device = torch.device(device_name) | |
| include_suffices = ['jpg', 'png', 'jpeg', 'JPG', 'PNG', 'JPEG'] | |
| if Path(input_path).is_dir(): | |
| image_paths = sorted(itertools.chain(*(Path(input_path).rglob(f'*.{suffix}') for suffix in include_suffices))) | |
| else: | |
| image_paths = [Path(input_path)] | |
| if len(image_paths) == 0: | |
| raise FileNotFoundError(f'No image files found in {input_path}') | |
| if not any([save_maps_, save_glb_, save_ply_]): | |
| warnings.warn('No output format specified. Please use "--maps", "--glb", or "--ply" to specify the output.') | |
| model = MoGeModel.from_pretrained(pretrained_model_name_or_path).to(device).eval() | |
| for image_path in (pbar := tqdm(image_paths, desc='Total images', disable=len(image_paths) <= 1)): | |
| image = cv2.cvtColor(cv2.imread(str(image_path)), cv2.COLOR_BGR2RGB) | |
| height, width = image.shape[:2] | |
| if resize_to is not None: | |
| height, width = min(resize_to, int(resize_to * height / width)), min(resize_to, int(resize_to * width / height)) | |
| image = cv2.resize(image, (width, height), cv2.INTER_AREA) | |
| splitted_extrinsics, splitted_intriniscs = get_panorama_cameras() | |
| splitted_resolution = 512 | |
| splitted_images = split_panorama_image(image, splitted_extrinsics, splitted_intriniscs, splitted_resolution) | |
| # Infer each view | |
| print('Inferring...') if pbar.disable else pbar.set_postfix_str(f'Inferring') | |
| splitted_distance_maps, splitted_masks = [], [] | |
| for i in trange(0, len(splitted_images), batch_size, desc='Inferring splitted views', disable=len(splitted_images) <= batch_size, leave=False): | |
| image_tensor = torch.tensor(np.stack(splitted_images[i:i + batch_size]) / 255, dtype=torch.float32, device=device).permute(0, 3, 1, 2) | |
| fov_x, fov_y = np.rad2deg(utils3d.numpy.intrinsics_to_fov(np.array(splitted_intriniscs[i:i + batch_size]))) | |
| fov_x = torch.tensor(fov_x, dtype=torch.float32, device=device) | |
| output = model.infer(image_tensor, fov_x=fov_x, apply_mask=False) | |
| distance_map, mask = output['points'].norm(dim=-1).cpu().numpy(), output['mask'].cpu().numpy() | |
| splitted_distance_maps.extend(list(distance_map)) | |
| splitted_masks.extend(list(mask)) | |
| # Save splitted | |
| if save_splitted: | |
| splitted_save_path = Path(output_path, image_path.stem, 'splitted') | |
| splitted_save_path.mkdir(exist_ok=True, parents=True) | |
| for i in range(len(splitted_images)): | |
| cv2.imwrite(str(splitted_save_path / f'{i:02d}.jpg'), cv2.cvtColor(splitted_images[i], cv2.COLOR_RGB2BGR)) | |
| cv2.imwrite(str(splitted_save_path / f'{i:02d}_distance_vis.png'), cv2.cvtColor(colorize_depth(splitted_distance_maps[i], splitted_masks[i]), cv2.COLOR_RGB2BGR)) | |
| # Merge | |
| print('Merging...') if pbar.disable else pbar.set_postfix_str(f'Merging') | |
| merging_width, merging_height = min(1920, width), min(960, height) | |
| panorama_depth, panorama_mask = merge_panorama_depth(merging_width, merging_height, splitted_distance_maps, splitted_masks, splitted_extrinsics, splitted_intriniscs) | |
| panorama_depth = panorama_depth.astype(np.float32) | |
| panorama_depth = cv2.resize(panorama_depth, (width, height), cv2.INTER_LINEAR) | |
| panorama_mask = cv2.resize(panorama_mask.astype(np.uint8), (width, height), cv2.INTER_NEAREST) > 0 | |
| points = panorama_depth[:, :, None] * spherical_uv_to_directions(utils3d.numpy.image_uv(width=width, height=height)) | |
| # Write outputs | |
| print('Writing outputs...') if pbar.disable else pbar.set_postfix_str(f'Inferring') | |
| save_path = Path(output_path, image_path.relative_to(input_path).parent, image_path.stem) | |
| save_path.mkdir(exist_ok=True, parents=True) | |
| if save_maps_: | |
| cv2.imwrite(str(save_path / 'image.jpg'), cv2.cvtColor(image, cv2.COLOR_RGB2BGR)) | |
| cv2.imwrite(str(save_path / 'depth_vis.png'), cv2.cvtColor(colorize_depth(panorama_depth, mask=panorama_mask), cv2.COLOR_RGB2BGR)) | |
| cv2.imwrite(str(save_path / 'depth.exr'), panorama_depth, [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT]) | |
| cv2.imwrite(str(save_path / 'points.exr'), points, [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT]) | |
| cv2.imwrite(str(save_path /'mask.png'), (panorama_mask * 255).astype(np.uint8)) | |
| # Export mesh & visulization | |
| if save_glb_ or save_ply_ or show: | |
| normals, normals_mask = utils3d.numpy.points_to_normals(points, panorama_mask) | |
| faces, vertices, vertex_colors, vertex_uvs = utils3d.numpy.image_mesh( | |
| points, | |
| image.astype(np.float32) / 255, | |
| utils3d.numpy.image_uv(width=width, height=height), | |
| mask=panorama_mask & ~(utils3d.numpy.depth_edge(panorama_depth, rtol=threshold) & utils3d.numpy.normals_edge(normals, tol=5, mask=normals_mask)), | |
| tri=True | |
| ) | |
| if save_glb_: | |
| save_glb(save_path / 'mesh.glb', vertices, faces, vertex_uvs, image) | |
| if save_ply_: | |
| save_ply(save_path / 'mesh.ply', vertices, faces, vertex_colors) | |
| if show: | |
| trimesh.Trimesh( | |
| vertices=vertices, | |
| vertex_colors=vertex_colors, | |
| faces=faces, | |
| process=False | |
| ).show() | |
| if __name__ == '__main__': | |
| main() |