# debug_load.py import torch from transformers import AutoTokenizer, M2M100ForConditionalGeneration # --- Configuration --- DEVICE = "cuda" if torch.cuda.is_available() else "cpu" nepali_model_path = r"D:\SIH\saksi_translation\models\nllb-finetuned-nepali-en" # --- Tokenizer Loading --- print("Loading Nepali tokenizer...") try: nepali_tokenizer = AutoTokenizer.from_pretrained(nepali_model_path) print("Nepali tokenizer loaded successfully.") print(nepali_tokenizer) except Exception as e: print(f"Error loading Nepali tokenizer: {e}") # --- Model Loading --- print("\nLoading Nepali model...") try: nepali_model = M2M100ForConditionalGeneration.from_pretrained(nepali_model_path).to(DEVICE) print("Nepali model loaded successfully.") print(nepali_model) except Exception as e: print(f"Error loading Nepali model: {e}")