Spaces:
Sleeping
Sleeping
File size: 21,719 Bytes
c968c6a 79a9bb6 3d347ae 79a9bb6 3d347ae 1ade647 79a9bb6 1ade647 3d347ae 79a9bb6 3d347ae 79a9bb6 3d347ae 79a9bb6 3d347ae 79a9bb6 3d347ae 79a9bb6 3d347ae c968c6a 3d347ae 1ade647 d741bd6 1ade647 d741bd6 1ade647 d741bd6 1ade647 3d347ae d741bd6 3d347ae d741bd6 3d347ae 79a9bb6 3d347ae d741bd6 3d347ae d741bd6 3d347ae c968c6a 3d347ae 1ade647 c968c6a 79a9bb6 c968c6a 1ade647 3d347ae 1ade647 79a9bb6 c968c6a 1ade647 c968c6a 1ade647 c968c6a 1ade647 3d347ae 3b6a7f7 1ade647 3d347ae 79a9bb6 1ade647 3d347ae 1ade647 3d347ae 1ade647 3d347ae 3b6a7f7 c968c6a 3b6a7f7 1ade647 3d347ae 3b6a7f7 3d347ae c968c6a 3b6a7f7 c968c6a 3d347ae 1ade647 3b6a7f7 1ade647 3d347ae 58903f8 79a9bb6 3d347ae 79a9bb6 3d347ae 79a9bb6 3d347ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
import os, json, importlib.util, tempfile, traceback, torch, re, math
import torch.nn as nn
import torch.nn.functional as F
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from transformers import AutoTokenizer, AutoModel
# ===== ปรับได้จาก Settings > Variables & secrets ของ Space =====
REPO_ID = os.getenv("REPO_ID", "Dusit-P/thai-sentiment-wcb")
DEFAULT_MODEL = os.getenv("DEFAULT_MODEL", "cnn_bilstm") # "cnn_bilstm" | "baseline" | "last4weighted_pure"
HF_TOKEN = os.getenv("HF_TOKEN", None) # ถ้าโมเดลเป็น private ให้เพิ่ม secret ชื่อนี้
# ---- theme colors (soft modern) ----
NEG_COLOR = os.getenv("NEG_COLOR", "#F87171") # red-400 (นุ่ม)
POS_COLOR = os.getenv("POS_COLOR", "#34D399") # emerald-400 (นุ่ม)
TEMPLATE = "plotly_white"
CACHE = {}
# ---------- โหลดสถาปัตยกรรมจาก repo (common/models.py) ----------
def _import_models():
if "models_module" in CACHE:
return CACHE["models_module"]
models_py = hf_hub_download(REPO_ID, filename="common/models.py", token=HF_TOKEN)
spec = importlib.util.spec_from_file_location("models", models_py)
mod = importlib.util.module_from_spec(spec)
spec.loader.exec_module(mod)
CACHE["models_module"] = mod
return mod
# ---------- Fallback เผื่อ common/models.py ยังไม่รู้จัก Model3 ----------
class _BaseHead(nn.Module):
def __init__(self, hidden_in, hidden_lstm=128, classes=2, dropout=0.3, pooling='masked_mean'):
super().__init__()
self.lstm = nn.LSTM(hidden_in, hidden_lstm, bidirectional=True, batch_first=True)
self.dropout = nn.Dropout(dropout)
self.fc = nn.Linear(hidden_lstm*2, classes)
assert pooling in ['cls','masked_mean','masked_max']
self.pooling = pooling
def _pool(self, x, mask):
if self.pooling=='cls': return x[:,0,:]
mask = mask.unsqueeze(-1)
if self.pooling=='masked_mean':
s=(x*mask).sum(1); d=mask.sum(1).clamp(min=1e-6); return s/d
x=x.masked_fill(mask==0,-1e9); return x.max(1).values
def forward_after_bert(self, seq, mask):
x,_ = self.lstm(seq)
x = self._pool(x, mask)
return self.fc(self.dropout(x))
class _Model3PureLast4(nn.Module):
"""Last-4 weighted (Pure): LSTM รับ 768 จาก BERT"""
def __init__(self, base_model, hidden=128, classes=2, dropout=0.3, pooling='masked_mean'):
super().__init__()
self.bert = AutoModel.from_pretrained(base_model)
self.w = nn.Parameter(torch.ones(4))
H = self.bert.config.hidden_size
self.head = _BaseHead(H, hidden, classes, dropout, pooling)
def forward(self, ids, mask):
out = self.bert(input_ids=ids, attention_mask=mask, output_hidden_states=True)
last4 = out.hidden_states[-4:]
w = F.softmax(self.w, dim=0)
seq = sum(w[i]*last4[i] for i in range(4)) # [B,T,768]
return self.head.forward_after_bert(seq, mask)
class _Model3ConvLast4(nn.Module):
"""Last-4 weighted + Conv1d(→128): LSTM รับ 128"""
def __init__(self, base_model, hidden=128, classes=2, dropout=0.3, pooling='masked_mean'):
super().__init__()
self.bert = AutoModel.from_pretrained(base_model)
self.w = nn.Parameter(torch.ones(4))
H = self.bert.config.hidden_size
self.c1 = nn.Conv1d(H,128,3,padding=1)
self.c2 = nn.Conv1d(128,128,5,padding=2)
self.head = _BaseHead(128, hidden, classes, dropout, pooling)
def forward(self, ids, mask):
out = self.bert(input_ids=ids, attention_mask=mask, output_hidden_states=True)
last4 = out.hidden_states[-4:]
w = F.softmax(self.w, dim=0)
seq = sum(w[i]*last4[i] for i in range(4)) # [B,T,768]
x = F.relu(self.c1(seq.transpose(1,2)))
x = F.relu(self.c2(x)).transpose(1,2) # [B,T,128]
return self.head.forward_after_bert(x, mask)
def _create_model_fallback(arch: str, base_model: str):
"""เลือกสถาปัตยกรรม fallback จากชื่อ arch ใน config.json"""
if arch in ("Model3_Pure_Last4Weighted", "last4weighted_pure", "last4_pure"):
return _Model3PureLast4(base_model)
if arch in ("Model3_MLP_Last4Weighted", "last4weighted"):
return _Model3ConvLast4(base_model)
raise ValueError(f"No fallback available for arch={arch}")
# ---------- โหลดโมเดลจากโฟลเดอร์ใน repo (เช่น cnn_bilstm/, baseline/, last4weighted_pure/) ----------
def load_model(model_name: str):
key = f"model:{model_name}"
if key in CACHE:
return CACHE[key]
cfg_path = hf_hub_download(REPO_ID, filename=f"{model_name}/config.json", token=HF_TOKEN)
w_path = hf_hub_download(REPO_ID, filename=f"{model_name}/model.safetensors", token=HF_TOKEN)
with open(cfg_path, "r", encoding="utf-8") as f:
cfg = json.load(f)
base_model = cfg.get("base_model", "airesearch/wangchanberta-base-att-spm-uncased")
arch_name = cfg.get("arch", "")
tok = AutoTokenizer.from_pretrained(base_model)
# พยายามสร้างจาก common/models.py ก่อน ถ้าไม่สำเร็จค่อย fallback
try:
models = _import_models()
model = models.create_model_by_name(arch_name)
except Exception as e:
print(f"[INFO] Using fallback for arch={arch_name} ({e})")
model = _create_model_fallback(arch_name, base_model)
state = load_file(w_path)
# ใช้ strict=True ถ้า key ตรง; ถ้าอยากกัน edge-case สามารถปรับเป็น strict=False ได้
model.load_state_dict(state, strict=True)
model.eval()
CACHE[key] = (model, tok, cfg)
return CACHE[key]
# ---------- helpers ----------
def _format_pct(x: float) -> str:
return f"{x*100:.2f}%"
# ====== ฟิลเตอร์ข้อความที่ไม่ใช่รีวิว / ค่าว่าง / สัญลักษณ์ ======
_INVALID_STRINGS = {"-", "--", "—", "n/a", "na", "null", "none", "nan", ".", "…", ""} # lower-case
_RE_HAS_LETTER = re.compile(r"[ก-๙A-Za-z]") # ต้องมีอย่างน้อย 1 ตัวอักษรไทยหรืออังกฤษ
def _norm_text(v) -> str:
"""แปลงค่าให้เป็นสตริงพร้อม trim และกัน NaN/None"""
if v is None:
return ""
if isinstance(v, float) and math.isnan(v):
return ""
s = str(v).strip()
return s
def _is_substantive_text(s: str, min_chars: int = 2) -> bool:
"""เงื่อนไขว่าเป็นข้อความที่พอจะวิเคราะห์ได้"""
if not s:
return False
s_lower = s.lower()
if s_lower in _INVALID_STRINGS:
return False
if not _RE_HAS_LETTER.search(s):
return False
if len(s.replace(" ", "")) < min_chars:
return False
return True
def _clean_texts(texts):
"""รับ list ใด ๆ → คืน (รายการที่ใช้ได้, จำนวนที่ถูกข้าม)"""
all_norm = [_norm_text(t) for t in texts]
cleaned = [t for t in all_norm if _is_substantive_text(t)]
skipped = len(all_norm) - len(cleaned)
return cleaned, skipped
def _detect_cols(df: pd.DataFrame):
"""เดาชื่อคอลัมน์รีวิว/ร้านอัตโนมัติ ถ้าไม่พบรีวิว เลือกคอลัมน์ object ตัวแรก"""
rev_cands = ["review", "text", "comment", "content", "message", "ข้อความ", "รีวิว"]
shop_cands = ["shop", "shop_name", "store", "restaurant", "brand", "merchant", "ชื่อร้าน"]
review_col = next((c for c in rev_cands if c in df.columns), None)
shop_col = next((c for c in shop_cands if c in df.columns), None)
if review_col is None:
obj_cols = [c for c in df.columns if df[c].dtype == object]
if obj_cols:
review_col = obj_cols[0]
return review_col, shop_col
def _summarize_df(df: pd.DataFrame):
"""สรุปภาพรวม + ตัวเลขเฉลี่ยความมั่นใจ"""
total = len(df)
neg = int((df["label"] == "negative").sum())
pos = int((df["label"] == "positive").sum())
neg_avg = pd.to_numeric(df["negative(%)"].str.rstrip("%"), errors="coerce").mean()
pos_avg = pd.to_numeric(df["positive(%)"].str.rstrip("%"), errors="coerce").mean()
info = (
f"**Summary** \n"
f"- Total: {total} \n"
f"- Negative: {neg} \n"
f"- Positive: {pos} \n"
f"- Avg negative: {neg_avg:.2f}% \n"
f"- Avg positive: {pos_avg:.2f}%"
)
return {"total": total, "neg": neg, "pos": pos, "neg_avg": neg_avg, "pos_avg": pos_avg, "md": info}
def _make_figures(df: pd.DataFrame):
s = _summarize_df(df)
# --- BAR: 2 trace, สีคงที่ ---
fig_bar = go.Figure()
fig_bar.add_bar(name="negative", x=["negative"], y=[s["neg"]], marker_color=NEG_COLOR)
fig_bar.add_bar(name="positive", x=["positive"], y=[s["pos"]], marker_color=POS_COLOR)
fig_bar.update_layout(
barmode="group",
title="Label counts",
xaxis_title="label",
yaxis_title="count",
template=TEMPLATE,
legend_title="label",
)
# --- PIE: สีสอดคล้องกับ bar ---
fig_pie = go.Figure(
go.Pie(
labels=["negative", "positive"],
values=[s["neg"], s["pos"]],
hole=0.35,
sort=False,
marker=dict(colors=[NEG_COLOR, POS_COLOR]),
)
)
fig_pie.update_layout(title="Label share", template=TEMPLATE)
return fig_bar, fig_pie, s["md"]
def _shop_summary(out_df: pd.DataFrame, max_shops=15):
"""สรุปต่อร้าน: ตาราง + stacked bar (pos/neg) — ใช้สีคงที่"""
if "shop" not in out_df.columns:
empty_tbl = pd.DataFrame(columns=["shop","total","positive","negative","positive_rate(%)","negative_rate(%)"])
return go.Figure(), empty_tbl
g = out_df.groupby("shop")["label"].value_counts().unstack(fill_value=0)
for col in ["positive","negative"]:
if col not in g.columns:
g[col] = 0
g["total"] = g["positive"] + g["negative"]
g = g.sort_values("total", ascending=False)
table = g[["total","positive","negative"]].copy()
table["positive_rate(%))"] = (table["positive"] / table["total"] * 100).round(2)
table["negative_rate(%)"] = (table["negative"] / table["total"] * 100).round(2)
table = table.reset_index().rename(columns={"index":"shop"})
# กราฟโชว์ top N ร้าน
top = table.head(max_shops)
fig = go.Figure()
fig.add_bar(name="positive", x=top["shop"], y=top["positive"], marker_color=POS_COLOR)
fig.add_bar(name="negative", x=top["shop"], y=top["negative"], marker_color=NEG_COLOR)
fig.update_layout(
barmode="stack",
title=f"Per-shop counts (top {len(top)})",
xaxis_title="shop",
yaxis_title="count",
legend_title="label",
template=TEMPLATE,
xaxis=dict(tickangle=-30),
)
return fig, table
# ---------- core prediction ----------
def _predict_batch(texts, model_name, batch_size=64):
"""รับ list[str] (ผ่านการกรองแล้ว) → คืน list[dict]"""
model, tok, cfg = load_model(model_name)
results = []
for i in range(0, len(texts), batch_size):
chunk = texts[i:i+batch_size]
enc = tok(chunk, padding=True, truncation=True, max_length=cfg["max_len"], return_tensors="pt")
with torch.no_grad():
logits = model(enc["input_ids"], enc["attention_mask"])
probs = F.softmax(logits, dim=1).cpu().numpy()
for txt, p in zip(chunk, probs):
neg, pos = float(p[0]), float(p[1])
label = "positive" if pos >= neg else "negative"
results.append({
"review": txt,
"negative(%)": _format_pct(neg),
"positive(%)": _format_pct(pos),
"label": label,
})
return results
# ---------- API wrappers ----------
def predict_one(text: str, model_choice: str):
try:
s = _norm_text(text)
if not _is_substantive_text(s):
return {"negative": 0.0, "positive": 0.0}, "invalid"
model_name = model_choice # ใช้ชื่อโฟลเดอร์โดยตรง
out = _predict_batch([s], model_name)[0]
probs = {
"negative": float(out["negative(%)"].rstrip("%"))/100.0,
"positive": float(out["positive(%)"].rstrip("%"))/100.0,
}
return probs, out["label"]
except Exception as e:
print("ERROR in predict_one:", repr(e))
traceback.print_exc()
raise
def predict_many(text_block: str, model_choice: str):
try:
model_name = model_choice # ใช้ชื่อโฟลเดอร์โดยตรง
raw_lines = (text_block or "").splitlines()
trimmed = [_norm_text(ln) for ln in raw_lines if _norm_text(ln)]
cleaned, skipped = _clean_texts(trimmed)
if len(cleaned) == 0:
empty = pd.DataFrame(columns=["review","negative(%)","positive(%)","label"])
return empty, go.Figure(), go.Figure(), "No valid text"
results = _predict_batch(cleaned, model_name)
df = pd.DataFrame(results, columns=["review","negative(%)","positive(%)","label"])
fig_bar, fig_pie, info_md = _make_figures(df)
info_md = f"{info_md} \n- Skipped (empty/non-text): {skipped}"
return df, fig_bar, fig_pie, info_md
except Exception as e:
print("ERROR in predict_many:", repr(e))
traceback.print_exc()
raise
def predict_csv(file_obj, model_choice: str, review_col_override: str = "", shop_col_override: str = ""):
"""
พฤติกรรม:
- ไม่ตัดแถวทิ้ง: แถว invalid ยังอยู่ เรียงตามไฟล์เดิม
- review ของแถว invalid = NA, ไม่คำนวณผลลัพธ์
- shop คงค่าจากไฟล์เดิม ไม่แปลงเป็นสตริง
- กราฟ/สรุป คำนวณจากเฉพาะแถว valid
"""
try:
if file_obj is None:
return pd.DataFrame(), None, go.Figure(), go.Figure(), go.Figure(), pd.DataFrame(), "กรุณาอัปโหลดไฟล์ CSV"
model_name = model_choice # ใช้ชื่อโฟลเดอร์โดยตรง
df = pd.read_csv(file_obj.name)
auto_rev, auto_shop = _detect_cols(df)
rev_col = (review_col_override or "").strip() or auto_rev
shop_col = (shop_col_override or "").strip() or auto_shop
if rev_col not in df.columns:
raise ValueError(f"ไม่พบคอลัมน์รีวิว '{rev_col}' ใน CSV (columns = {list(df.columns)})")
# === เตรียมรีวิวและมาสก์แถวที่ 'มีเนื้อหา' เท่านั้น ===
reviews_norm = df[rev_col].apply(_norm_text)
mask_valid = reviews_norm.apply(_is_substantive_text)
idx_valid = df.index[mask_valid].tolist()
skipped = int((~mask_valid).sum())
# === พยากรณ์เฉพาะแถวที่ valid ===
results = []
if len(idx_valid) > 0:
texts_valid = reviews_norm.loc[idx_valid].tolist()
results = _predict_batch(texts_valid, model_name) # list[dict] ตามลำดับ idx_valid
# === สร้าง DataFrame ผลลัพธ์ "ครบทุกแถว" ตามลำดับเดิม ===
out = pd.DataFrame(index=df.index, columns=["review","negative(%)","positive(%)","label"])
# review: valid → normalized text, invalid → NA
out.loc[idx_valid, "review"] = reviews_norm.loc[idx_valid].values
out.loc[~mask_valid, "review"] = pd.NA
# เติมผลพยากรณ์กลับตาม index เดิมสำหรับแถว valid
for i, idx in enumerate(idx_valid):
p = results[i]
out.at[idx, "negative(%)"] = p["negative(%)"]
out.at[idx, "positive(%)"] = p["positive(%)"]
out.at[idx, "label"] = p["label"]
# แทรกคอลัมน์ shop ด้านหน้า (คงค่าตามต้นฉบับโดยไม่ .astype(str))
if shop_col and shop_col in df.columns:
out.insert(0, "shop", df[shop_col])
else:
out.insert(0, "shop", pd.Series([pd.NA]*len(out), index=out.index))
# === เตรียมข้อมูล "เฉพาะแถวที่ valid" ไว้ทำกราฟ/สรุป ===
out_valid = out.loc[idx_valid].copy()
# ไฟล์ผลลัพธ์สำหรับดาวน์โหลด → ครบทุกแถว
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".csv")
out.to_csv(tmp.name, index=False, encoding="utf-8-sig")
if out_valid.empty:
empty_fig = go.Figure()
info_md = "ไม่พบรีวิวที่เป็นข้อความ\n- Skipped (empty/non-text): {}".format(skipped)
empty_tbl = pd.DataFrame(columns=["shop","total","positive","negative","positive_rate(%)","negative_rate(%)"])
return out, tmp.name, empty_fig, empty_fig, empty_fig, empty_tbl, info_md
# กราฟ/สรุปรวม (จากแถวที่ valid เท่านั้น)
fig_bar, fig_pie, info_md = _make_figures(out_valid)
# กราฟ/ตารางต่อร้าน (ใช้เฉพาะ valid)
fig_shop, tbl_shop = _shop_summary(out_valid)
# แนบข้อความบอกคอลัมน์ที่ใช้ + จำนวนแถวที่ถูกข้าม
info_md = (
f"{info_md} \n"
f"ใช้คอลัมน์รีวิว: {rev_col}"
+ (f" | คอลัมน์ร้าน: {shop_col}" if shop_col and (shop_col in df.columns) else " | ไม่มีคอลัมน์ร้าน")
+ f" \n- Skipped (empty/non-text): {skipped}"
)
return out, tmp.name, fig_bar, fig_pie, fig_shop, tbl_shop, info_md
except Exception as e:
print("ERROR in predict_csv:", repr(e))
traceback.print_exc()
raise
# ---------- Gradio UI ----------
AVAILABLE_CHOICES = ["cnn_bilstm", "baseline", "last4weighted_bilstm"] # เพิ่มชื่อโฟลเดอร์โมเดลใหม่ที่คุณอัปจริง
if DEFAULT_MODEL not in AVAILABLE_CHOICES:
DEFAULT_MODEL = "cnn_bilstm"
with gr.Blocks(title="Thai Sentiment API (Dusit-P)") as demo:
gr.Markdown("### Thai Sentiment (WangchanBERTa + LSTM/CNN/Last4 Heads)")
model_radio = gr.Radio(choices=AVAILABLE_CHOICES, value=DEFAULT_MODEL, label="เลือกโมเดล")
with gr.Tab("Single"):
t1 = gr.Textbox(lines=3, label="ข้อความรีวิว (1 ข้อความ)")
probs = gr.Label(label="Probabilities")
pred = gr.Textbox(label="Prediction", interactive=False)
gr.Button("Predict").click(predict_one, [t1, model_radio], [probs, pred])
with gr.Tab("Batch (หลายข้อความ)"):
t2 = gr.Textbox(lines=8, label="พิมพ์หลายรีวิว (บรรทัดละ 1 รีวิว)")
df2 = gr.Dataframe(label="ผลลัพธ์", interactive=False)
bar2 = gr.Plot(label="Label counts (bar)")
pie2 = gr.Plot(label="Label share (pie)")
sum2 = gr.Markdown()
gr.Button("Run Batch").click(predict_many, [t2, model_radio], [df2, bar2, pie2, sum2])
with gr.Tab("CSV (auto-detect columns)"):
f = gr.File(label="อัปโหลด CSV", file_types=[".csv"])
review_col_inp = gr.Textbox(label="ชื่อคอลัมน์รีวิว (เว้นว่างให้เดาได้)")
shop_col_inp = gr.Textbox(label="ชื่อคอลัมน์ร้าน (เว้นว่างได้)")
df3 = gr.Dataframe(label="ผลลัพธ์ CSV", interactive=False)
download = gr.File(label="ดาวน์โหลดผลลัพธ์")
bar3 = gr.Plot(label="Label counts (bar)")
pie3 = gr.Plot(label="Label share (pie)")
shop_bar = gr.Plot(label="Per-shop stacked bar")
shop_tbl = gr.Dataframe(label="Per-shop summary", interactive=False)
info = gr.Markdown()
gr.Button("Run CSV").click(
predict_csv,
inputs=[f, model_radio, review_col_inp, shop_col_inp],
outputs=[df3, download, bar3, pie3, shop_bar, shop_tbl, info]
)
if __name__ == "__main__":
demo.launch()
|