Spaces:
Running
Running
Upload 14 files
Browse files- .gitignore +31 -0
- README.md +57 -5
- app.py +243 -0
- data/chua.npy +3 -0
- data/lorenz63.npy +3 -0
- data/selkov.npy +3 -0
- data/sine.npy +3 -0
- dynamix/__init__.py +9 -0
- dynamix/dynamix.py +266 -0
- dynamix/forecaster.py +199 -0
- dynamix/preprocessing.py +262 -0
- dynamix/preprocessing_utilities.py +536 -0
- dynamix/utilities.py +174 -0
- requirements.txt +10 -0
.gitignore
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
example_evaluation.ipynb
|
| 2 |
+
test.py
|
| 3 |
+
forecast.csv
|
| 4 |
+
forecast.npy
|
| 5 |
+
|
| 6 |
+
__pycache__/
|
| 7 |
+
*.py[cod]
|
| 8 |
+
*$py.class
|
| 9 |
+
.pytest_cache/
|
| 10 |
+
.coverage
|
| 11 |
+
htmlcov/
|
| 12 |
+
.tox/
|
| 13 |
+
.nox/
|
| 14 |
+
*.so
|
| 15 |
+
.Python
|
| 16 |
+
env/
|
| 17 |
+
build/
|
| 18 |
+
develop-eggs/
|
| 19 |
+
dist/
|
| 20 |
+
downloads/
|
| 21 |
+
eggs/
|
| 22 |
+
.eggs/
|
| 23 |
+
lib/
|
| 24 |
+
lib64/
|
| 25 |
+
parts/
|
| 26 |
+
sdist/
|
| 27 |
+
var/
|
| 28 |
+
*.egg-info/
|
| 29 |
+
.installed.cfg
|
| 30 |
+
*.egg
|
| 31 |
+
.vscode/
|
README.md
CHANGED
|
@@ -1,14 +1,66 @@
|
|
| 1 |
---
|
| 2 |
title: DynaMix
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 5.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: cc-by-4.0
|
| 11 |
short_description: Zero-shot forecasting of Dynamical Systems using DynaMix
|
| 12 |
---
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
title: DynaMix
|
| 3 |
+
emoji: 🧨
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 5.43.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: cc-by-4.0
|
| 11 |
short_description: Zero-shot forecasting of Dynamical Systems using DynaMix
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# DynaMix: Zero-shot Forecasting of Dynamical Systems
|
| 15 |
+
|
| 16 |
+
This DynaMix demo is an interactive Gradio app for zero-shot dynamical systems reconstruction using the DynaMix architecture (accepted NeurIPS 2025 paper [](https://arxiv.org/abs/2505.13192)). It loads pretrained models from the Hugging Face Hub (see [DynaMix model](https://huggingface.co/DurstewitzLab/dynamix)) and provides predictions from uploaded context data.
|
| 17 |
+
|
| 18 |
+
### Key Features
|
| 19 |
+
- **Zero-shot forecasting**: Powered by DynaMix model architecture
|
| 20 |
+
- **Custom Context Upload**: Upload your CSV/NPY data or choose a preset (Lorenz63, Noisy Sine, Chua, Selkov)
|
| 21 |
+
- **Interactive Settings**: Configure forecast settings
|
| 22 |
+
- **Visualizations**: Plots of context data and forecast
|
| 23 |
+
- **Exports**: Download forecast as CSV and NPY
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
## Using the Application
|
| 27 |
+
|
| 28 |
+
### Data Input
|
| 29 |
+
You can either upload your own data or choose a preset dataset from the left panel.
|
| 30 |
+
|
| 31 |
+
- **Upload**: Accepts `.csv` or `.npy` files
|
| 32 |
+
- **Presets**: `Noisy Sine`, `Lorenz63`, `Chua`, `Selkov`
|
| 33 |
+
|
| 34 |
+
Supported data formats:
|
| 35 |
+
- **NPY files**: Numpy array of shape `(time_steps, dimensions)`. 1D time series arrays are auto-expanded to `(time_steps, 1)`; otherwise must be 2D with at least 2 time steps and ≥1 dimension.
|
| 36 |
+
|
| 37 |
+
- **CSV files**: Each column is a dimension; each row is a time step. Only numeric columns are used. Data must be 2D with at least 2 time steps and ≥1 dimension.
|
| 38 |
+
|
| 39 |
+
Example CSV format:
|
| 40 |
+
```csv
|
| 41 |
+
dim_1,dim_2,dim_3
|
| 42 |
+
0.1,0.2,0.3
|
| 43 |
+
0.4,0.5,0.6
|
| 44 |
+
0.7,0.8,0.9
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
### Forecast Settings
|
| 48 |
+
- **Model Selection**: Select the pretrained model to use for forecasting.
|
| 49 |
+
|
| 50 |
+
- **Forecast Length**: Number of future steps to generate (`1`–`2001`, step `100`, default `512`)
|
| 51 |
+
|
| 52 |
+
- **Advanced Settings**
|
| 53 |
+
- **Preprocessing Method**: Method to use for preprocessing the context data (for cases where input dims < model dims)
|
| 54 |
+
- **Standardize**: Normalize context to zero mean and unit variance (default: enabled)
|
| 55 |
+
- **Fit Nonstationary**: Account for non-stationary trends in the data (default: disabled)
|
| 56 |
+
- **Context Steps**: Maximum number of last steps from the uploaded data to use as context. If your uploaded sequence is longer, it will be truncated to the most recent `Context Steps`. (default `2048`)
|
| 57 |
+
|
| 58 |
+
### Outputs
|
| 59 |
+
- **Interactive Plot**: Shows historical context (blue) and forecast (red) per dimension, up to 15 dimensions.
|
| 60 |
+
- **Files**:
|
| 61 |
+
- `forecast.csv`: Full forecast for all dimensions.
|
| 62 |
+
- `forecast.npy`: Full forecast ndarray including all dimensions.
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
## License
|
| 66 |
+
This project is released under the **CC BY 4.0** license.
|
app.py
ADDED
|
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import torch
|
| 4 |
+
import os
|
| 5 |
+
import numpy as np
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
|
| 8 |
+
from dynamix.forecaster import DynaMixForecaster
|
| 9 |
+
from dynamix.utilities import load_hf_model, auto_model_selection
|
| 10 |
+
from dynamix.utilities import create_forecast_plot
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
# --- Gradio UI ---
|
| 15 |
+
with gr.Blocks(title="DynaMix 🧨 - Forecasting", theme=gr.themes.Soft()) as demo:
|
| 16 |
+
gr.Markdown("# DynaMix 🧨 - Forecasting")
|
| 17 |
+
|
| 18 |
+
with gr.Row():
|
| 19 |
+
# Left sidebar for configuration
|
| 20 |
+
with gr.Column(scale=1):
|
| 21 |
+
gr.Markdown("Upload your data or choose a preset, then generate forecasts.")
|
| 22 |
+
|
| 23 |
+
# Data upload section
|
| 24 |
+
gr.Markdown("## Data Selection")
|
| 25 |
+
with gr.Group():
|
| 26 |
+
file_input = gr.File(
|
| 27 |
+
file_types=[".csv", ".npy"],
|
| 28 |
+
label="Upload CSV / NPY",
|
| 29 |
+
height=200
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
preset_dropdown = gr.Dropdown(
|
| 33 |
+
choices=["-- No preset selected --", "Noisy Sine", "Lorenz63", "Chua", "Selkov"],
|
| 34 |
+
value="-- No preset selected --",
|
| 35 |
+
label="Or choose a preset",
|
| 36 |
+
info="Select from predefined datasets"
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Forecast settings
|
| 40 |
+
gr.Markdown("## Forecast Settings")
|
| 41 |
+
with gr.Group():
|
| 42 |
+
model_selection = gr.Dropdown(
|
| 43 |
+
choices=["Auto"],
|
| 44 |
+
value="Auto",
|
| 45 |
+
label="Model Selection",
|
| 46 |
+
info="Choose the DynaMix model to use for forecasting"
|
| 47 |
+
)
|
| 48 |
+
horizon_slider = gr.Slider(
|
| 49 |
+
minimum=1,
|
| 50 |
+
maximum=2001,
|
| 51 |
+
value=512,
|
| 52 |
+
step=100,
|
| 53 |
+
label="Forecast Length",
|
| 54 |
+
info="Choose how many future steps to forecast"
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
# Advanced settings
|
| 58 |
+
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
| 59 |
+
preprocessing_method = gr.Dropdown(
|
| 60 |
+
choices=["pos_embedding", "zero_embedding", "delay_embedding", "delay_embedding_random"],
|
| 61 |
+
value="pos_embedding",
|
| 62 |
+
label="Preprocessing Method",
|
| 63 |
+
info="Select the embedding method for time series with dimension < model dimension"
|
| 64 |
+
)
|
| 65 |
+
standardize = gr.Checkbox(
|
| 66 |
+
value=True,
|
| 67 |
+
label="Standardize",
|
| 68 |
+
info="Normalize the data to zero mean and unit variance"
|
| 69 |
+
)
|
| 70 |
+
fit_nonstationary = gr.Checkbox(
|
| 71 |
+
value=False,
|
| 72 |
+
label="Fit Nonstationary",
|
| 73 |
+
info="Account for non-stationary trends in the data"
|
| 74 |
+
)
|
| 75 |
+
context_steps = gr.Number(
|
| 76 |
+
value=2048,
|
| 77 |
+
label="Context Steps",
|
| 78 |
+
info="Maximum number of steps to use as context from provided data (default: 4096)"
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
plot_btn = gr.Button("► Plot Forecasts", variant="primary", size="lg")
|
| 82 |
+
|
| 83 |
+
gr.Markdown("# Instructions")
|
| 84 |
+
instructions = gr.Markdown("""
|
| 85 |
+
**📊 Data Format Requirements**
|
| 86 |
+
|
| 87 |
+
**NPY Files**: Shape: `(time_steps, dimensions)` or `(time_steps,)`\n
|
| 88 |
+
**CSV Files**: Each column = one dimension, each row = one time step
|
| 89 |
+
|
| 90 |
+
**⚡ Quick Start**
|
| 91 |
+
1. **Upload** a single dynamical system or time series (CSV or NPY)
|
| 92 |
+
2. **Configure** forecast length and settings
|
| 93 |
+
3. **Generate** predictions with "Plot Forecasts" (up to 15 dims of data are plotted)
|
| 94 |
+
4. **Download** the forecast as CSV or NPY
|
| 95 |
+
""")
|
| 96 |
+
|
| 97 |
+
# Right section for plots and downloads
|
| 98 |
+
with gr.Column(scale=3):
|
| 99 |
+
gr.Markdown("# Forecast Plot")
|
| 100 |
+
plot_output = gr.Plot(show_label=False)
|
| 101 |
+
with gr.Row():
|
| 102 |
+
csv_output = gr.File(label="Download Forecast CSV", visible=True)
|
| 103 |
+
npy_output = gr.File(label="Download Forecast NPY", visible=True)
|
| 104 |
+
|
| 105 |
+
def load_preset_data(preset_name):
|
| 106 |
+
"""Load preset data from the data folder"""
|
| 107 |
+
if preset_name == "-- No preset selected --":
|
| 108 |
+
return None
|
| 109 |
+
|
| 110 |
+
preset_files = {
|
| 111 |
+
"Lorenz63": "data/lorenz63.npy",
|
| 112 |
+
"Noisy Sine": "data/sine.npy",
|
| 113 |
+
"Chua": "data/chua.npy",
|
| 114 |
+
"Selkov": "data/selkov.npy"
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
if preset_name in preset_files:
|
| 118 |
+
file_path = preset_files[preset_name]
|
| 119 |
+
if os.path.exists(file_path):
|
| 120 |
+
return file_path
|
| 121 |
+
return None
|
| 122 |
+
|
| 123 |
+
def run_forecast(file, horizon, model_selection, preprocessing_method, standardize, fit_nonstationary, context_steps, preset_selection):
|
| 124 |
+
try:
|
| 125 |
+
|
| 126 |
+
# 1. Load the data
|
| 127 |
+
# Check if preset is selected
|
| 128 |
+
preset_file_path = load_preset_data(preset_selection)
|
| 129 |
+
|
| 130 |
+
if not file and not preset_file_path:
|
| 131 |
+
gr.Warning("Please upload a file or select a preset.")
|
| 132 |
+
raise ValueError("Please upload a file or select a preset.")
|
| 133 |
+
|
| 134 |
+
# Use preset file if selected, otherwise use uploaded file
|
| 135 |
+
if preset_file_path:
|
| 136 |
+
file_path = preset_file_path
|
| 137 |
+
ext = ".npy"
|
| 138 |
+
else:
|
| 139 |
+
file_path = file.name
|
| 140 |
+
ext = os.path.splitext(file.name)[1].lower()
|
| 141 |
+
|
| 142 |
+
# Load input file (.csv or .npy)
|
| 143 |
+
if ext == ".csv":
|
| 144 |
+
df = pd.read_csv(file_path)
|
| 145 |
+
|
| 146 |
+
if 'series_name' in df.columns:
|
| 147 |
+
gr.Warning("Unsupported CSV format: only column-per-dimension format is supported.")
|
| 148 |
+
raise ValueError("Unsupported CSV format: only column-per-dimension format is supported.")
|
| 149 |
+
|
| 150 |
+
# Keep only numeric columns
|
| 151 |
+
df = df.select_dtypes(include=[np.number]).copy()
|
| 152 |
+
if df.shape[1] == 0:
|
| 153 |
+
gr.Warning("No numeric columns found in CSV file.")
|
| 154 |
+
raise ValueError("No numeric columns found in CSV file.")
|
| 155 |
+
values = df.values
|
| 156 |
+
elif ext == ".npy":
|
| 157 |
+
values = np.load(file_path)
|
| 158 |
+
# Defer DataFrame creation until after shape validation (handles 1D arrays)
|
| 159 |
+
df = None
|
| 160 |
+
else:
|
| 161 |
+
gr.Warning("Unsupported file format. Please upload .csv or .npy")
|
| 162 |
+
raise ValueError("Unsupported file format. Please upload .csv or .npy")
|
| 163 |
+
|
| 164 |
+
# 2. Validate shape and dimensions, then construct context
|
| 165 |
+
if not isinstance(values, np.ndarray):
|
| 166 |
+
values = np.asarray(values)
|
| 167 |
+
if values.ndim != 2:
|
| 168 |
+
if values.ndim == 1:
|
| 169 |
+
values = np.reshape(values, (-1, 1))
|
| 170 |
+
else:
|
| 171 |
+
gr.Warning("Input must be 2D with shape (time_steps, dimensions).")
|
| 172 |
+
raise ValueError("Input must be 2D with shape (time_steps, dimensions).")
|
| 173 |
+
if values.shape[0] < 2:
|
| 174 |
+
gr.Warning("Input must contain at least 2 time steps.")
|
| 175 |
+
raise ValueError("Input must contain at least 2 time steps.")
|
| 176 |
+
if values.shape[1] < 1:
|
| 177 |
+
gr.Warning("Input must contain at least 1 dimension.")
|
| 178 |
+
raise ValueError("Input must contain at least 1 dimension.")
|
| 179 |
+
if values.shape[1] > 100:
|
| 180 |
+
gr.Warning(f"Too many dimensions: {values.shape[1]} > 100. Reduce dimensions to ≤ 100.")
|
| 181 |
+
raise ValueError(f"Too many dimensions: {values.shape[1]} > 100. Reduce dimensions to ≤ 100.")
|
| 182 |
+
if context_steps < values.shape[0]:
|
| 183 |
+
values = values[-context_steps:] # Use only the last n steps
|
| 184 |
+
values = values.astype(np.float32)
|
| 185 |
+
context_ts_tensor = torch.tensor(values, dtype=torch.float32)
|
| 186 |
+
|
| 187 |
+
# 3. Load the selected model
|
| 188 |
+
if model_selection == "Auto":
|
| 189 |
+
current_model = load_hf_model(auto_model_selection(context_ts_tensor))
|
| 190 |
+
else:
|
| 191 |
+
current_model = load_hf_model(model_selection)
|
| 192 |
+
forecaster = DynaMixForecaster(current_model)
|
| 193 |
+
if values.shape[1] > 3 and values.shape[1] <= 100:
|
| 194 |
+
gr.Warning(f"Input dimension {values.shape[1]} > model dimension {current_model.N}. This may lead to performance degradation.")
|
| 195 |
+
|
| 196 |
+
# 4. Run forecast
|
| 197 |
+
with torch.no_grad():
|
| 198 |
+
reconstruction_ts = forecaster.forecast(
|
| 199 |
+
context=context_ts_tensor,
|
| 200 |
+
horizon=int(horizon),
|
| 201 |
+
preprocessing_method=preprocessing_method,
|
| 202 |
+
standardize=standardize,
|
| 203 |
+
fit_nonstationary=fit_nonstationary,
|
| 204 |
+
)
|
| 205 |
+
reconstruction_ts_np = reconstruction_ts.cpu().numpy()
|
| 206 |
+
|
| 207 |
+
# 5. Create Plotly figure
|
| 208 |
+
fig = create_forecast_plot(values, reconstruction_ts_np, horizon)
|
| 209 |
+
|
| 210 |
+
# 6. Save forecast as CSV (all dimensions) and NPY (all dimensions)
|
| 211 |
+
if df is None:
|
| 212 |
+
# Create column names for NPY input after shape normalization
|
| 213 |
+
df = pd.DataFrame(values, columns=[f"dim_{i+1}" for i in range(values.shape[1])])
|
| 214 |
+
forecast_df = pd.DataFrame(reconstruction_ts_np, columns=df.columns.tolist())
|
| 215 |
+
csv_path = "forecast.csv"
|
| 216 |
+
forecast_df.to_csv(csv_path, index=False)
|
| 217 |
+
|
| 218 |
+
# 7. Save full forecast as NPY (all dimensions)
|
| 219 |
+
npy_path = "forecast.npy"
|
| 220 |
+
np.save(npy_path, reconstruction_ts_np)
|
| 221 |
+
|
| 222 |
+
# 8. Print success notification with timestamp
|
| 223 |
+
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 224 |
+
print(f"[{current_time}] - Forecast completed successfully!")
|
| 225 |
+
|
| 226 |
+
return fig, csv_path, npy_path
|
| 227 |
+
|
| 228 |
+
except Exception as e:
|
| 229 |
+
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 230 |
+
print(f"[{current_time}] - Forecast error: {str(e)}")
|
| 231 |
+
return None, None, None
|
| 232 |
+
|
| 233 |
+
plot_btn.click(
|
| 234 |
+
run_forecast,
|
| 235 |
+
inputs=[
|
| 236 |
+
file_input, horizon_slider, model_selection, preprocessing_method, standardize,
|
| 237 |
+
fit_nonstationary, context_steps, preset_dropdown
|
| 238 |
+
],
|
| 239 |
+
outputs=[plot_output, csv_output, npy_output]
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
if __name__ == "__main__":
|
| 243 |
+
demo.launch()
|
data/chua.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bc0a1090e555f13aab17aa70feca3dd0fe64f50edbd33849105a84ce86f08d11
|
| 3 |
+
size 24128
|
data/lorenz63.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aafcc2759e8981b44b4cc9f335967934647b20e27b1952d89fb0f371e1a835a6
|
| 3 |
+
size 48128
|
data/selkov.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2576908c5fd0e55267a41022f81b5b9c8f5f8fbec326a0977d8a702982ee4fef
|
| 3 |
+
size 1160
|
data/sine.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:429315428d533a103b6d772cbb2d5d341f0a73145bb196758717cf73b0a655b2
|
| 3 |
+
size 4224
|
dynamix/__init__.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Model module for Zero-shot DSR.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from .dynamix import *
|
| 6 |
+
from .preprocessing_utilities import *
|
| 7 |
+
from .preprocessing import *
|
| 8 |
+
from .forecaster import *
|
| 9 |
+
from .utilities import *
|
dynamix/dynamix.py
ADDED
|
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
class GatingNetwork(nn.Module):
|
| 7 |
+
def __init__(self, N, M, Experts, dtype=torch.float32):
|
| 8 |
+
super().__init__()
|
| 9 |
+
self.conv = nn.Conv1d(N, N, kernel_size=2, padding=0, bias=True, dtype=dtype)
|
| 10 |
+
self.softmax_temp1 = nn.Parameter(torch.tensor([0.1], dtype=dtype))
|
| 11 |
+
self.D = nn.Parameter(torch.zeros(N, M, dtype=dtype))
|
| 12 |
+
self.D.data[:, :N] = torch.eye(N, dtype=dtype)
|
| 13 |
+
self.mlp_layer1 = nn.Linear(M + N, Experts, dtype=dtype)
|
| 14 |
+
self.mlp_layer2 = nn.Linear(Experts, Experts, dtype=dtype)
|
| 15 |
+
self.softmax_temp2 = nn.Parameter(torch.tensor([0.1], dtype=dtype))
|
| 16 |
+
self.sigma = nn.Parameter(torch.ones(N, dtype=dtype) * 0.05, requires_grad=True)
|
| 17 |
+
|
| 18 |
+
def forward(self, context, z, precomputed_cnn=None):
|
| 19 |
+
# context: (seq_length, batch_size, N)
|
| 20 |
+
# z: (M, batch_size)
|
| 21 |
+
# precomputed_cnn: Optional precomputed CNN features for inference (seq_length-1, batch_size, N)
|
| 22 |
+
|
| 23 |
+
seq_length, batch_size, N = context.shape
|
| 24 |
+
M = z.shape[0]
|
| 25 |
+
|
| 26 |
+
# Compute attention weights
|
| 27 |
+
z_obs = self.D @ z.detach()
|
| 28 |
+
z_current = z_obs + self.sigma.unsqueeze(1) * torch.randn(N, batch_size, dtype=z.dtype, device=z.device)
|
| 29 |
+
|
| 30 |
+
z_current_t = z_current.transpose(0, 1)
|
| 31 |
+
context_frames = context[:-1]
|
| 32 |
+
|
| 33 |
+
distances = torch.sum(torch.abs(context_frames - z_current_t.unsqueeze(0)), dim=2)
|
| 34 |
+
attention_weights = F.softmax(-distances / torch.abs(self.softmax_temp1[0]), dim=0)
|
| 35 |
+
|
| 36 |
+
# Process context with convolution
|
| 37 |
+
# Use precomputed CNN features if provided, otherwise compute them
|
| 38 |
+
if precomputed_cnn is not None:
|
| 39 |
+
encoded = precomputed_cnn
|
| 40 |
+
else:
|
| 41 |
+
context_for_conv = context.permute(1, 2, 0)
|
| 42 |
+
encoded = self.conv(context_for_conv)
|
| 43 |
+
encoded = encoded.permute(2, 0, 1)
|
| 44 |
+
|
| 45 |
+
# Build weighted embedding
|
| 46 |
+
weighted_encoded = encoded * attention_weights.unsqueeze(2)
|
| 47 |
+
embedding = torch.sum(weighted_encoded, dim=0)
|
| 48 |
+
embedding = embedding.transpose(0, 1)
|
| 49 |
+
|
| 50 |
+
# Predict expert weights
|
| 51 |
+
combined = torch.cat([embedding, z], dim=0)
|
| 52 |
+
combined_t = combined.transpose(0, 1)
|
| 53 |
+
mlp_output = self.mlp_layer2(F.relu(self.mlp_layer1(combined_t)))
|
| 54 |
+
w_exp = F.softmax(-mlp_output.transpose(0, 1) / torch.abs(self.softmax_temp2[0]), dim=0)
|
| 55 |
+
return w_exp
|
| 56 |
+
|
| 57 |
+
def gaussian_init(self, M, N, dtype=torch.float32):
|
| 58 |
+
return torch.randn(M, N, dtype=dtype) * 0.01
|
| 59 |
+
|
| 60 |
+
class ExpertNetwork(nn.Module):
|
| 61 |
+
"""Base class for different expert architectures."""
|
| 62 |
+
def __init__(self, M, P=0, probabilistic=False, dtype=torch.float32):
|
| 63 |
+
super().__init__()
|
| 64 |
+
self.M = M
|
| 65 |
+
self.P = P
|
| 66 |
+
self.probabilistic = probabilistic
|
| 67 |
+
self.dtype = dtype
|
| 68 |
+
|
| 69 |
+
# Parameter for probabilistic experts
|
| 70 |
+
if probabilistic:
|
| 71 |
+
self.sigma = nn.Parameter(torch.ones(1, dtype=dtype) * 0.05, requires_grad=True)
|
| 72 |
+
|
| 73 |
+
def forward(self, z):
|
| 74 |
+
raise NotImplementedError("Subclasses must implement forward method")
|
| 75 |
+
|
| 76 |
+
def add_noise(self, z):
|
| 77 |
+
"""Add stochasticity to the latent state if in probabilistic mode.
|
| 78 |
+
|
| 79 |
+
Args:
|
| 80 |
+
z: Input tensor
|
| 81 |
+
"""
|
| 82 |
+
if self.probabilistic:
|
| 83 |
+
batch_size = z.shape[1]
|
| 84 |
+
noise = torch.randn(self.M, batch_size, dtype=z.dtype, device=z.device)
|
| 85 |
+
return z + self.sigma * noise
|
| 86 |
+
return z
|
| 87 |
+
|
| 88 |
+
def gaussian_init(self, M, N):
|
| 89 |
+
return torch.randn(M, N, dtype=self.dtype) * 0.01
|
| 90 |
+
|
| 91 |
+
def normalized_positive_definite(self, M):
|
| 92 |
+
R = np.random.randn(M, M).astype(np.float32)
|
| 93 |
+
K = R.T @ R / M + np.eye(M)
|
| 94 |
+
lambd = np.max(np.abs(np.linalg.eigvals(K)))
|
| 95 |
+
return K / lambd
|
| 96 |
+
|
| 97 |
+
class AlmostLinearRNN(ExpertNetwork):
|
| 98 |
+
"""Almost linear RNN expert architecture."""
|
| 99 |
+
def __init__(self, M, P, probabilistic=False, dtype=torch.float32):
|
| 100 |
+
super().__init__(M, P, probabilistic, dtype=dtype)
|
| 101 |
+
self.A, self.W, self.h = self.initialize_A_W_h(M)
|
| 102 |
+
|
| 103 |
+
def forward(self, z):
|
| 104 |
+
# z: (M, batch_size)
|
| 105 |
+
# Split z into regular and ReLU parts
|
| 106 |
+
z1 = z[:-self.P, :]
|
| 107 |
+
z2 = F.relu(z[-self.P:, :])
|
| 108 |
+
zcat = torch.cat([z1, z2], dim=0)
|
| 109 |
+
|
| 110 |
+
output = self.A.unsqueeze(-1) * z + self.W @ zcat + self.h.unsqueeze(-1)
|
| 111 |
+
|
| 112 |
+
# Add stochasticity if probabilistic
|
| 113 |
+
if self.probabilistic:
|
| 114 |
+
output = self.add_noise(output)
|
| 115 |
+
|
| 116 |
+
return output
|
| 117 |
+
|
| 118 |
+
def initialize_A_W_h(self, M):
|
| 119 |
+
A = torch.nn.Parameter(torch.diag(torch.tensor(self.normalized_positive_definite(M), dtype=self.dtype)))
|
| 120 |
+
W = torch.nn.Parameter(self.gaussian_init(M, M))
|
| 121 |
+
h = torch.nn.Parameter(torch.zeros(M, dtype=self.dtype))
|
| 122 |
+
return A, W, h
|
| 123 |
+
|
| 124 |
+
class ClippedShallowPLRNN(ExpertNetwork):
|
| 125 |
+
"""Clipped shallow PLRNN expert architecture."""
|
| 126 |
+
def __init__(self, M, hidden_dim=50, probabilistic=False, dtype=torch.float32):
|
| 127 |
+
super().__init__(M, hidden_dim, probabilistic, dtype=dtype)
|
| 128 |
+
self.A = torch.nn.Parameter(torch.diag(torch.tensor(self.normalized_positive_definite(M), dtype=self.dtype)))
|
| 129 |
+
self.W1 = torch.nn.Parameter(self.gaussian_init(M, hidden_dim))
|
| 130 |
+
self.W2 = torch.nn.Parameter(self.gaussian_init(hidden_dim, M))
|
| 131 |
+
self.h1 = torch.nn.Parameter(torch.zeros(M, dtype=self.dtype))
|
| 132 |
+
self.h2 = torch.nn.Parameter(torch.zeros(hidden_dim, dtype=self.dtype))
|
| 133 |
+
|
| 134 |
+
def forward(self, z):
|
| 135 |
+
# z: (M, batch_size)
|
| 136 |
+
W2z = self.W2 @ z
|
| 137 |
+
output = (self.A.unsqueeze(-1) * z +
|
| 138 |
+
self.W1 @ (F.relu(W2z + self.h2.unsqueeze(-1)) - F.relu(W2z)) +
|
| 139 |
+
self.h1.unsqueeze(-1))
|
| 140 |
+
|
| 141 |
+
# Add stochasticity if probabilistic
|
| 142 |
+
if self.probabilistic:
|
| 143 |
+
output = self.add_noise(output)
|
| 144 |
+
|
| 145 |
+
return output
|
| 146 |
+
|
| 147 |
+
class DynaMix(nn.Module):
|
| 148 |
+
def __init__(self, M, N, Experts, P=2, hidden_dim=50, expert_type="almost_linear_rnn",
|
| 149 |
+
probabilistic_expert=False, dtype=torch.float32):
|
| 150 |
+
"""
|
| 151 |
+
Initialize a DynaMix model.
|
| 152 |
+
|
| 153 |
+
Args:
|
| 154 |
+
M: Dimension of latent state
|
| 155 |
+
N: Dimension of observation space
|
| 156 |
+
Experts: Number of experts
|
| 157 |
+
P: Number of ReLU dimensions
|
| 158 |
+
hidden_dim: Hidden dimension for clipped shallow PLRNN
|
| 159 |
+
expert_type: Type of expert to use ("almost_linear_rnn" or "clipped_shallow_plrnn")
|
| 160 |
+
probabilistic_expert: Whether to use probabilistic experts
|
| 161 |
+
dtype: Data type for model parameters (default: torch.float32)
|
| 162 |
+
"""
|
| 163 |
+
super().__init__()
|
| 164 |
+
|
| 165 |
+
self.expert_type = expert_type
|
| 166 |
+
self.probabilistic_expert = probabilistic_expert
|
| 167 |
+
self.experts = nn.ModuleList()
|
| 168 |
+
self.dtype = dtype
|
| 169 |
+
|
| 170 |
+
for _ in range(Experts):
|
| 171 |
+
if expert_type == "almost_linear_rnn":
|
| 172 |
+
self.experts.append(AlmostLinearRNN(M, P, probabilistic=probabilistic_expert, dtype=dtype))
|
| 173 |
+
elif expert_type == "clipped_shallow_plrnn":
|
| 174 |
+
self.experts.append(ClippedShallowPLRNN(M, hidden_dim, probabilistic=probabilistic_expert, dtype=dtype))
|
| 175 |
+
else:
|
| 176 |
+
raise ValueError(f"Unknown expert type: {expert_type}")
|
| 177 |
+
|
| 178 |
+
self.gating_network = GatingNetwork(N, M, Experts, dtype=dtype)
|
| 179 |
+
self.B = nn.Parameter(self.uniform_init((N, M), dtype=dtype))
|
| 180 |
+
self.N = N
|
| 181 |
+
self.Experts = Experts
|
| 182 |
+
self.P = P
|
| 183 |
+
self.hidden_dim = hidden_dim
|
| 184 |
+
self.M = M
|
| 185 |
+
|
| 186 |
+
def step(self, z, context, precomputed_cnn=None):
|
| 187 |
+
# z: (M, batch_size)
|
| 188 |
+
# context: (seq_length, batch_size, N)
|
| 189 |
+
# precomputed_cnn: Optional precomputed CNN features
|
| 190 |
+
|
| 191 |
+
# Compute expert weights
|
| 192 |
+
w_exp = self.gating_network(context, z, precomputed_cnn=precomputed_cnn) # (Experts, batch_size)
|
| 193 |
+
results = []
|
| 194 |
+
|
| 195 |
+
# Compute expert outputs
|
| 196 |
+
for i in range(self.Experts):
|
| 197 |
+
expert_output = self.experts[i](z)
|
| 198 |
+
results.append(expert_output * w_exp[i, :].unsqueeze(0))
|
| 199 |
+
|
| 200 |
+
# Combine expert outputs
|
| 201 |
+
return torch.sum(torch.stack(results, dim=0), dim=0)
|
| 202 |
+
|
| 203 |
+
def forward(self, z, context, precomputed_cnn=None):
|
| 204 |
+
"""
|
| 205 |
+
Forward pass through the DynaMix model.
|
| 206 |
+
|
| 207 |
+
Args:
|
| 208 |
+
z: Latent state of shape (M, batch_size)
|
| 209 |
+
context: Context data of shape (seq_length, batch_size, N)
|
| 210 |
+
precomputed_cnn: Optional precomputed CNN features to avoid redundant computation for inference
|
| 211 |
+
Shape should be (seq_length-1, batch_size, N)
|
| 212 |
+
|
| 213 |
+
Returns:
|
| 214 |
+
Updated latent state
|
| 215 |
+
"""
|
| 216 |
+
return self.step(z, context, precomputed_cnn=precomputed_cnn)
|
| 217 |
+
|
| 218 |
+
def precompute_cnn(self, context):
|
| 219 |
+
"""
|
| 220 |
+
Precompute CNN features for more efficient inference.
|
| 221 |
+
|
| 222 |
+
Args:
|
| 223 |
+
context: Context data of shape (seq_length, batch_size, N)
|
| 224 |
+
|
| 225 |
+
Returns:
|
| 226 |
+
Precomputed CNN features of shape (seq_length-1, batch_size, N)
|
| 227 |
+
"""
|
| 228 |
+
# Process context with convolution
|
| 229 |
+
context_for_conv = context.permute(1, 2, 0)
|
| 230 |
+
encoded = self.gating_network.conv(context_for_conv)
|
| 231 |
+
|
| 232 |
+
return encoded.permute(2, 0, 1)
|
| 233 |
+
|
| 234 |
+
def uniform_init(self, shape, dtype=torch.float32):
|
| 235 |
+
din = shape[-1]
|
| 236 |
+
r = 1 / np.sqrt(din)
|
| 237 |
+
return (torch.rand(shape, dtype=dtype) * 2 - 1) * r
|
| 238 |
+
|
| 239 |
+
def gaussian_init(self, M, N):
|
| 240 |
+
return torch.randn(M, N, dtype=self.dtype) * 0.01
|
| 241 |
+
|
| 242 |
+
def print_model_parameters(model):
|
| 243 |
+
"""Print simplified breakdown of model parameters by component."""
|
| 244 |
+
total_params = sum(p.numel() for p in model.parameters())
|
| 245 |
+
|
| 246 |
+
print("\n" + "-"*60)
|
| 247 |
+
print("Model Parameter Summary:")
|
| 248 |
+
print(f" Architecture: DynaMix with {model.expert_type} experts")
|
| 249 |
+
if model.expert_type == "almost_linear_rnn":
|
| 250 |
+
print(f" Dimensions: M={model.M}, N={model.N}, Experts={model.Experts}, P={model.P}")
|
| 251 |
+
else:
|
| 252 |
+
print(f" Dimensions: M={model.M}, N={model.N}, Experts={model.Experts}, Hidden dim={model.hidden_dim}")
|
| 253 |
+
print(f" Probabilistic experts: {model.probabilistic_expert}")
|
| 254 |
+
|
| 255 |
+
# Count parameters
|
| 256 |
+
gating_params = sum(p.numel() for p in model.gating_network.parameters())
|
| 257 |
+
expert_params = sum(p.numel() for expert in model.experts for p in expert.parameters())
|
| 258 |
+
b_params = model.B.numel()
|
| 259 |
+
|
| 260 |
+
# Print parameter counts
|
| 261 |
+
print(f"\nParameter counts:")
|
| 262 |
+
print(f" Gating Network: {gating_params:,} ({gating_params/total_params:.1%})")
|
| 263 |
+
print(f" Experts: {expert_params:,} ({expert_params/total_params:.1%})")
|
| 264 |
+
print(f" Observation matrix: {b_params:,} ({b_params/total_params:.1%})")
|
| 265 |
+
print(f" Total: {total_params:,} parameters")
|
| 266 |
+
print("-"*60)
|
dynamix/forecaster.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from .preprocessing import DataPreprocessor
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class DynaMixForecaster:
|
| 7 |
+
"""
|
| 8 |
+
Forecasting pipeline for DynaMix models with batch processing support.
|
| 9 |
+
"""
|
| 10 |
+
def __init__(self, model):
|
| 11 |
+
"""
|
| 12 |
+
Initialize the forecaster with a DynaMix model.
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
model: DynaMix model instance
|
| 16 |
+
"""
|
| 17 |
+
self.model = model
|
| 18 |
+
|
| 19 |
+
def _init_latent_state(self, initial_condition):
|
| 20 |
+
"""
|
| 21 |
+
Initialize the latent state from the initial condition.
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
initial_condition: Initial state of shape (batch_size, N)
|
| 25 |
+
|
| 26 |
+
Returns:
|
| 27 |
+
Initial latent state z
|
| 28 |
+
"""
|
| 29 |
+
N = self.model.N
|
| 30 |
+
|
| 31 |
+
# Initialize latent state
|
| 32 |
+
z = torch.matmul(initial_condition, self.model.B).t() # (M, batch_size)
|
| 33 |
+
z[:N, :] = initial_condition.t()
|
| 34 |
+
|
| 35 |
+
return z
|
| 36 |
+
|
| 37 |
+
def _reshape_for_model(self, context, initial_x=None, device=None):
|
| 38 |
+
"""
|
| 39 |
+
Prepare and reshape input data for the model.
|
| 40 |
+
Handles tensor conversion, dimension adjustments, and reshaping when feature_dim > model_dim.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
context: Context data tensor of shape (seq_length, batch_size, feature_dim) or (seq_length, feature_dim)
|
| 44 |
+
initial_x: Optional initial condition of shape (batch_size, feature_dim) or (feature_dim,)
|
| 45 |
+
device: Device to place tensors on
|
| 46 |
+
|
| 47 |
+
Returns:
|
| 48 |
+
Processed context, initial_x, dimensions, and reshaping metadata
|
| 49 |
+
"""
|
| 50 |
+
# Get the dtype from model parameters
|
| 51 |
+
model_dtype = next(self.model.parameters()).dtype
|
| 52 |
+
|
| 53 |
+
# Convert to torch tensor if needed
|
| 54 |
+
if not isinstance(context, torch.Tensor):
|
| 55 |
+
context = torch.tensor(context, dtype=model_dtype, device=device)
|
| 56 |
+
elif context.device != device or context.dtype != model_dtype:
|
| 57 |
+
context = context.to(device=device, dtype=model_dtype)
|
| 58 |
+
|
| 59 |
+
if initial_x is not None and not isinstance(initial_x, torch.Tensor):
|
| 60 |
+
initial_x = torch.tensor(initial_x, dtype=model_dtype, device=device)
|
| 61 |
+
elif initial_x is not None and (initial_x.device != device or initial_x.dtype != model_dtype):
|
| 62 |
+
initial_x = initial_x.to(device=device, dtype=model_dtype)
|
| 63 |
+
|
| 64 |
+
# Check data dimensions and reshape if needed
|
| 65 |
+
original_dim = context.dim()
|
| 66 |
+
if original_dim == 2:
|
| 67 |
+
context = context.unsqueeze(1) # (seq_length, feature_dim) -> (seq_length, 1, feature_dim)
|
| 68 |
+
elif original_dim != 3:
|
| 69 |
+
raise ValueError(f"Expected 2D or 3D tensor for context, got shape {context.shape} with {context.dim()} dimensions")
|
| 70 |
+
if initial_x is not None and initial_x.dim() == 1:
|
| 71 |
+
initial_x = initial_x.unsqueeze(0) # (feature_dim,) -> (1, feature_dim)
|
| 72 |
+
if initial_x.shape[1] != context.shape[2]:
|
| 73 |
+
raise ValueError(f"Initial condition has {initial_x.shape[1]} features, but context has {context.shape[2]} features")
|
| 74 |
+
|
| 75 |
+
# Data shape
|
| 76 |
+
seq_length, batch_size, feature_dim = context.shape
|
| 77 |
+
|
| 78 |
+
# Check if reshaping is needed for model dimension
|
| 79 |
+
if feature_dim <= self.model.N:
|
| 80 |
+
return context, initial_x, (batch_size, feature_dim, False, None, None, original_dim)
|
| 81 |
+
|
| 82 |
+
print(f"Warning: Input feature dimension {feature_dim} exceeds model dimension {self.model.N}. "
|
| 83 |
+
f"This may lead to performance degradation."
|
| 84 |
+
f"Reshaping data to treat each feature as separate time series.")
|
| 85 |
+
|
| 86 |
+
# Store original dimensions for reshaping back later
|
| 87 |
+
original_batch_size = batch_size
|
| 88 |
+
original_feature_dim = feature_dim
|
| 89 |
+
|
| 90 |
+
# Reshape context to (seq_length, batch_size * feature_dim, 1)
|
| 91 |
+
transposed = context.permute(0, 2, 1)
|
| 92 |
+
new_batch_size = batch_size * feature_dim
|
| 93 |
+
reshaped_context = transposed.reshape(seq_length, new_batch_size, 1)
|
| 94 |
+
|
| 95 |
+
# Similarly reshape initial_x if provided
|
| 96 |
+
reshaped_initial_x = initial_x
|
| 97 |
+
if initial_x is not None:
|
| 98 |
+
# Reshape from (batch_size, feature_dim) to (batch_size * feature_dim, 1)
|
| 99 |
+
reshaped_initial_x = initial_x.transpose(0, 1).reshape(new_batch_size, 1)
|
| 100 |
+
|
| 101 |
+
return reshaped_context, reshaped_initial_x, (new_batch_size, 1, True, original_batch_size, original_feature_dim, original_dim)
|
| 102 |
+
|
| 103 |
+
def _reshape_to_original(self, output, reshape_metadata):
|
| 104 |
+
"""
|
| 105 |
+
Reshape output back to original dimensions.
|
| 106 |
+
Handles both high-dimensional reshaping and 2D input restoration.
|
| 107 |
+
|
| 108 |
+
Args:
|
| 109 |
+
output: Model output of shape (T, batch_size, N)
|
| 110 |
+
reshape_metadata: Tuple containing (was_reshaped, original_batch_size, original_feature_dim, original_dim)
|
| 111 |
+
|
| 112 |
+
Returns:
|
| 113 |
+
Output with original shape restored
|
| 114 |
+
"""
|
| 115 |
+
_, _, was_reshaped, original_batch_size, original_feature_dim, original_dim = reshape_metadata
|
| 116 |
+
|
| 117 |
+
# Step 1: Reshape back to original dimensions if needed
|
| 118 |
+
if was_reshaped:
|
| 119 |
+
# Current shape: (T, batch_size=original_batch_size*original_feature_dim, 1)
|
| 120 |
+
T = output.shape[0]
|
| 121 |
+
|
| 122 |
+
# First reshape to (T, original_feature_dim, original_batch_size)
|
| 123 |
+
# by treating the batch dimension as (original_feature_dim, original_batch_size)
|
| 124 |
+
reshaped = output.reshape(T, original_feature_dim, original_batch_size, -1)
|
| 125 |
+
|
| 126 |
+
# Then permute to (T, original_batch_size, original_feature_dim)
|
| 127 |
+
output = reshaped.permute(0, 2, 1, 3).squeeze(-1)
|
| 128 |
+
|
| 129 |
+
# Step 2: If input was 2D, remove batch dimension from output
|
| 130 |
+
if original_dim == 2 and output.shape[1] == 1:
|
| 131 |
+
output = output.squeeze(1)
|
| 132 |
+
|
| 133 |
+
return output
|
| 134 |
+
|
| 135 |
+
@torch.no_grad()
|
| 136 |
+
def forecast(self, context, horizon, preprocessing_method="pos_embedding",
|
| 137 |
+
standardize=True, fit_nonstationary=False, initial_x=None):
|
| 138 |
+
"""
|
| 139 |
+
Efficient batched forecasting with the DynaMix model.
|
| 140 |
+
|
| 141 |
+
This method implements a complete forecasting pipeline including:
|
| 142 |
+
- Data preprocessing (Box-Cox, detrending, standardization)
|
| 143 |
+
- Embedding techniques for dimensionality matching
|
| 144 |
+
- DynaMix model prediction
|
| 145 |
+
- Data postprocessing (inverse transformations)
|
| 146 |
+
|
| 147 |
+
Args:
|
| 148 |
+
context: Context data tensor of shape (seq_length, batch_size, feature_dim) or (seq_length, feature_dim)
|
| 149 |
+
horizon: Forecast horizon (number of steps to predict)
|
| 150 |
+
preprocessing_method: Data preprocessing method ('pos_embedding', 'zero_embedding',
|
| 151 |
+
'delay_embedding', or 'delay_embedding_random') (default: 'pos_embedding')
|
| 152 |
+
standardize: Whether to standardize the data (default: True)
|
| 153 |
+
fit_nonstationary: Whether to fit a non-stationary time series (default: False)
|
| 154 |
+
initial_x: Optional initial condition of shape (batch_size, feature_dim) or (feature_dim,)
|
| 155 |
+
|
| 156 |
+
Returns:
|
| 157 |
+
Predicted sequence of shape (horizon, batch_size, feature_dim)
|
| 158 |
+
"""
|
| 159 |
+
# Get model dimensions
|
| 160 |
+
M = self.model.M
|
| 161 |
+
N = self.model.N
|
| 162 |
+
device = context.device if isinstance(context, torch.Tensor) else self.model.B.device
|
| 163 |
+
model_dtype = next(self.model.parameters()).dtype
|
| 164 |
+
|
| 165 |
+
# Apply context reshaping if needed
|
| 166 |
+
context, initial_x, shape_metadata = self._reshape_for_model(context, initial_x, device)
|
| 167 |
+
|
| 168 |
+
# Create data preprocessor
|
| 169 |
+
preprocessor = DataPreprocessor(
|
| 170 |
+
standardize=standardize,
|
| 171 |
+
box_cox=fit_nonstationary,
|
| 172 |
+
detrending=fit_nonstationary,
|
| 173 |
+
preprocessing_method=preprocessing_method
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# Step 1: Apply preprocessing pipeline
|
| 177 |
+
context_embedded, initial_condition = preprocessor.preprocess(context, self.model.N, initial_x)
|
| 178 |
+
|
| 179 |
+
# Step 2: Initialize latent state
|
| 180 |
+
z = self._init_latent_state(initial_condition)
|
| 181 |
+
|
| 182 |
+
# Step 3: Perform forecasting loop
|
| 183 |
+
Z_gen = torch.empty(horizon, M, shape_metadata[0], device=device, dtype=model_dtype)
|
| 184 |
+
with torch.amp.autocast(device_type='cuda' if device.type == 'cuda' else 'cpu', enabled=device.type == 'cuda'):
|
| 185 |
+
precomputed_cnn = self.model.precompute_cnn(context_embedded)
|
| 186 |
+
for t in range(horizon):
|
| 187 |
+
z = self.model(z, context_embedded, precomputed_cnn=precomputed_cnn)
|
| 188 |
+
Z_gen[t] = z
|
| 189 |
+
|
| 190 |
+
# Step 4: Apply observation generation
|
| 191 |
+
output = Z_gen[:, :shape_metadata[1], :].permute(0, 2, 1) # (horizon, batch_size, feature_dim)
|
| 192 |
+
|
| 193 |
+
# Step 5: Apply inverse data transformations (e.g. standardization, ...)
|
| 194 |
+
output = preprocessor.postprocess(output)
|
| 195 |
+
|
| 196 |
+
# Step 6: Reshape back to original dimensions if needed
|
| 197 |
+
output = self._reshape_to_original(output, shape_metadata)
|
| 198 |
+
|
| 199 |
+
return output
|
dynamix/preprocessing.py
ADDED
|
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from .preprocessing_utilities import (TimeSeriesProcessor, Embedding,
|
| 4 |
+
BoxCoxTransformer, Detrending, estimate_initial_condition)
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class DataPreprocessor:
|
| 8 |
+
"""
|
| 9 |
+
Main class for data preprocessing that orchestrates all transformations.
|
| 10 |
+
"""
|
| 11 |
+
def __init__(self, standardize=True, box_cox=False, detrending=False, preprocessing_method="pos_embedding"):
|
| 12 |
+
"""
|
| 13 |
+
Initialize the data preprocessor.
|
| 14 |
+
|
| 15 |
+
Args:
|
| 16 |
+
standardize: Whether to standardize the data
|
| 17 |
+
box_cox: Whether to apply Box-Cox transformation
|
| 18 |
+
detrending: Whether to apply exponential detrending
|
| 19 |
+
preprocessing_method: Method for embedding ('pos_embedding', 'zero_embedding',
|
| 20 |
+
'delay_embedding', 'delay_embedding_random')
|
| 21 |
+
"""
|
| 22 |
+
self.standardize = standardize
|
| 23 |
+
self.box_cox = box_cox
|
| 24 |
+
self.detrending = detrending
|
| 25 |
+
self.preprocessing_method = preprocessing_method
|
| 26 |
+
|
| 27 |
+
# Parameters for inverse transformations
|
| 28 |
+
self.box_cox_params_list = None
|
| 29 |
+
self.detrending_params_list = None
|
| 30 |
+
self.context_mean = None
|
| 31 |
+
self.context_std = None
|
| 32 |
+
self.original_context = None
|
| 33 |
+
self.batch_size = None
|
| 34 |
+
self.feature_dim = None
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def _apply_transformations(self, context):
|
| 38 |
+
"""
|
| 39 |
+
Apply Box-Cox transformation and/or detrending to each batch in the context data.
|
| 40 |
+
|
| 41 |
+
Args:
|
| 42 |
+
context: Context data tensor of shape (seq_length, batch_size, N_data)
|
| 43 |
+
|
| 44 |
+
Returns:
|
| 45 |
+
Transformed context data
|
| 46 |
+
"""
|
| 47 |
+
# Store original context for inverse transformations
|
| 48 |
+
self.original_context = context.clone()
|
| 49 |
+
|
| 50 |
+
# Apply Box-Cox transformation for each batch
|
| 51 |
+
if self.box_cox:
|
| 52 |
+
transformed_context = torch.zeros_like(context)
|
| 53 |
+
self.box_cox_params_list = []
|
| 54 |
+
|
| 55 |
+
for b in range(self.batch_size):
|
| 56 |
+
batch_context = context[:, b, :]
|
| 57 |
+
transformed, params = BoxCoxTransformer.transform(batch_context)
|
| 58 |
+
transformed_context[:, b, :] = transformed
|
| 59 |
+
self.box_cox_params_list.append(params)
|
| 60 |
+
|
| 61 |
+
context = transformed_context
|
| 62 |
+
|
| 63 |
+
# Apply detrending for each batch
|
| 64 |
+
if self.detrending:
|
| 65 |
+
detrended_context = torch.zeros_like(context)
|
| 66 |
+
self.detrending_params_list = []
|
| 67 |
+
|
| 68 |
+
for b in range(self.batch_size):
|
| 69 |
+
batch_context = context[:, b, :]
|
| 70 |
+
detrended, params = Detrending.apply_detrending(batch_context)
|
| 71 |
+
detrended_context[:, b, :] = detrended
|
| 72 |
+
self.detrending_params_list.append(params)
|
| 73 |
+
|
| 74 |
+
context = detrended_context
|
| 75 |
+
|
| 76 |
+
return context
|
| 77 |
+
|
| 78 |
+
def _apply_transformations_inverse(self, output):
|
| 79 |
+
"""
|
| 80 |
+
Apply inverse Box-Cox and detrending transformations.
|
| 81 |
+
|
| 82 |
+
Args:
|
| 83 |
+
output: Model output of shape (T, batch_size, N)
|
| 84 |
+
|
| 85 |
+
Returns:
|
| 86 |
+
Output with transformations reversed
|
| 87 |
+
"""
|
| 88 |
+
# Apply inverse detrending for each batch
|
| 89 |
+
if self.detrending and self.detrending_params_list is not None:
|
| 90 |
+
for b in range(self.batch_size):
|
| 91 |
+
batch_output = output[:, b, :]
|
| 92 |
+
batch_context = self.original_context[:, b, :]
|
| 93 |
+
batch_output = Detrending.apply_detrending_inverse(batch_context, batch_output, self.detrending_params_list[b])
|
| 94 |
+
output[:, b, :] = batch_output
|
| 95 |
+
|
| 96 |
+
# Apply inverse Box-Cox transformation for each batch
|
| 97 |
+
if self.box_cox and self.box_cox_params_list is not None:
|
| 98 |
+
for b in range(self.batch_size):
|
| 99 |
+
batch_output = output[:, b, :]
|
| 100 |
+
batch_output = BoxCoxTransformer.inverse_transform(batch_output, self.box_cox_params_list[b])
|
| 101 |
+
output[:, b, :] = batch_output
|
| 102 |
+
|
| 103 |
+
return output
|
| 104 |
+
|
| 105 |
+
def _standardize_data(self, context):
|
| 106 |
+
"""
|
| 107 |
+
Standardize each batch in the context data.
|
| 108 |
+
|
| 109 |
+
Args:
|
| 110 |
+
context: Context data tensor of shape (seq_length, batch_size, N_data)
|
| 111 |
+
initial_x: Optional initial condition of shape (batch_size, N_data)
|
| 112 |
+
|
| 113 |
+
Returns:
|
| 114 |
+
Standardized context and initial_x (if provided)
|
| 115 |
+
"""
|
| 116 |
+
if not self.standardize:
|
| 117 |
+
return context
|
| 118 |
+
|
| 119 |
+
# Calculate mean and std across time dimension for each batch separately
|
| 120 |
+
self.context_mean = torch.mean(context, dim=0) # (batch_size, N_data)
|
| 121 |
+
self.context_std = torch.std(context, dim=0) # (batch_size, N_data)
|
| 122 |
+
self.context_std = torch.clamp(self.context_std, min=1e-6) # Avoid division by zero
|
| 123 |
+
|
| 124 |
+
# Standardize using broadcasting
|
| 125 |
+
context = (context - self.context_mean.unsqueeze(0)) / self.context_std.unsqueeze(0)
|
| 126 |
+
|
| 127 |
+
return context
|
| 128 |
+
|
| 129 |
+
def _unstandardize_data(self, output):
|
| 130 |
+
"""
|
| 131 |
+
Undo standardization by applying the inverse transformation.
|
| 132 |
+
|
| 133 |
+
Args:
|
| 134 |
+
output: Model output of shape (T, batch_size, N)
|
| 135 |
+
|
| 136 |
+
Returns:
|
| 137 |
+
Output with standardization reversed
|
| 138 |
+
"""
|
| 139 |
+
if self.standardize and self.context_mean is not None and self.context_std is not None:
|
| 140 |
+
return output * self.context_std.unsqueeze(0) + self.context_mean.unsqueeze(0)
|
| 141 |
+
return output
|
| 142 |
+
|
| 143 |
+
def _apply_embedding(self, context, model_dim):
|
| 144 |
+
"""
|
| 145 |
+
Apply data preprocessing to each batch to reach model dimension.
|
| 146 |
+
|
| 147 |
+
Args:
|
| 148 |
+
context: Context data tensor of shape (seq_length, batch_size, N_data)
|
| 149 |
+
model_dim: Target model dimension
|
| 150 |
+
|
| 151 |
+
Returns:
|
| 152 |
+
Preprocessed context data tensor
|
| 153 |
+
"""
|
| 154 |
+
context_embedded_batch = []
|
| 155 |
+
|
| 156 |
+
for b in range(self.batch_size):
|
| 157 |
+
batch_context = context[:, b, :]
|
| 158 |
+
batch_embedded = Embedding.apply_embedding(batch_context, model_dim, self.preprocessing_method)
|
| 159 |
+
context_embedded_batch.append(batch_embedded)
|
| 160 |
+
|
| 161 |
+
# Align sequence lengths across batches
|
| 162 |
+
seq_lengths = [emb.shape[0] for emb in context_embedded_batch]
|
| 163 |
+
min_seq_len = min(seq_lengths)
|
| 164 |
+
context_embedded_batch = [emb[-min_seq_len:] for emb in context_embedded_batch]
|
| 165 |
+
|
| 166 |
+
# Stack along batch dimension
|
| 167 |
+
return torch.stack(context_embedded_batch, dim=1)
|
| 168 |
+
|
| 169 |
+
def _prepare_initial_condition(self, context_embedded, initial_x, model_dim):
|
| 170 |
+
"""
|
| 171 |
+
Prepare initial condition for forecasting.
|
| 172 |
+
|
| 173 |
+
Args:
|
| 174 |
+
context_embedded: Preprocessed context data
|
| 175 |
+
initial_x: Optional initial condition
|
| 176 |
+
model_dim: Model dimension
|
| 177 |
+
|
| 178 |
+
Returns:
|
| 179 |
+
Initial condition for forecasting
|
| 180 |
+
|
| 181 |
+
Raises:
|
| 182 |
+
ValueError: If initial condition is provided with Box-Cox or detrending enabled
|
| 183 |
+
"""
|
| 184 |
+
if initial_x is None:
|
| 185 |
+
# Use last context value for each batch
|
| 186 |
+
return context_embedded[-1]
|
| 187 |
+
|
| 188 |
+
# Raise error if initial condition is provided with Box-Cox or detrending enabled
|
| 189 |
+
if (self.box_cox or self.detrending):
|
| 190 |
+
raise ValueError(
|
| 191 |
+
"Using initial conditions with Box-Cox or detrending is not supported. "
|
| 192 |
+
"Either disable Box-Cox and detrending or do not provide an initial condition."
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
# Process initial conditions for each batch
|
| 196 |
+
initial_x_processed = torch.zeros(self.batch_size, model_dim, device=context_embedded.device)
|
| 197 |
+
for b in range(self.batch_size):
|
| 198 |
+
batch_initial = initial_x[b]
|
| 199 |
+
|
| 200 |
+
# Apply standardization if enabled
|
| 201 |
+
if self.standardize and self.context_mean is not None and self.context_std is not None:
|
| 202 |
+
batch_initial = (batch_initial - self.context_mean[b]) / (self.context_std[b] + 1e-8)
|
| 203 |
+
|
| 204 |
+
# If dimensions are smaller than model_dim, estimate full initial condition
|
| 205 |
+
if initial_x.shape[1] < model_dim:
|
| 206 |
+
# Find matching state in context_embedded
|
| 207 |
+
batch_initial = estimate_initial_condition(
|
| 208 |
+
batch_initial,
|
| 209 |
+
context_embedded[:, b, :],
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
initial_x_processed[b] = batch_initial
|
| 213 |
+
|
| 214 |
+
return initial_x_processed
|
| 215 |
+
|
| 216 |
+
def preprocess(self, context, model_dim, initial_x=None):
|
| 217 |
+
"""
|
| 218 |
+
Apply the complete preprocessing pipeline to the input data.
|
| 219 |
+
|
| 220 |
+
Args:
|
| 221 |
+
context: Context data tensor of shape (seq_length, batch_size, N_data) or (seq_length, N_data)
|
| 222 |
+
model_dim: Target model dimension
|
| 223 |
+
initial_x: Optional initial condition of shape (batch_size, N_data) or (N_data,)
|
| 224 |
+
|
| 225 |
+
Returns:
|
| 226 |
+
Preprocessed context data and initial condition
|
| 227 |
+
"""
|
| 228 |
+
# Store dimensions
|
| 229 |
+
self.batch_size = context.shape[1]
|
| 230 |
+
self.feature_dim = context.shape[2]
|
| 231 |
+
|
| 232 |
+
# Apply transformations (Box-Cox, detrending)
|
| 233 |
+
context = self._apply_transformations(context)
|
| 234 |
+
|
| 235 |
+
# Standardize data if requested
|
| 236 |
+
context = self._standardize_data(context)
|
| 237 |
+
|
| 238 |
+
# Apply embedding to reach model dimension
|
| 239 |
+
context_embedded = self._apply_embedding(context, model_dim)
|
| 240 |
+
|
| 241 |
+
# Prepare initial batch
|
| 242 |
+
initial_condition = self._prepare_initial_condition(context_embedded, initial_x, model_dim)
|
| 243 |
+
|
| 244 |
+
return context_embedded, initial_condition
|
| 245 |
+
|
| 246 |
+
def postprocess(self, output):
|
| 247 |
+
"""
|
| 248 |
+
Apply inverse transformations to restore original data scaling.
|
| 249 |
+
|
| 250 |
+
Args:
|
| 251 |
+
output: Model output of shape (T, batch_size, N)
|
| 252 |
+
|
| 253 |
+
Returns:
|
| 254 |
+
Output with inverse transformations applied
|
| 255 |
+
"""
|
| 256 |
+
# Undo standardization
|
| 257 |
+
output = self._unstandardize_data(output)
|
| 258 |
+
|
| 259 |
+
# Apply inverse transformations (Box-Cox, detrending)
|
| 260 |
+
output = self._apply_transformations_inverse(output)
|
| 261 |
+
|
| 262 |
+
return output
|
dynamix/preprocessing_utilities.py
ADDED
|
@@ -0,0 +1,536 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from scipy import stats
|
| 4 |
+
from scipy.signal import find_peaks
|
| 5 |
+
import random
|
| 6 |
+
from statsmodels.tsa.stattools import acf
|
| 7 |
+
from scipy.ndimage import gaussian_filter1d
|
| 8 |
+
from scipy import optimize
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class TimeSeriesProcessor:
|
| 12 |
+
"""
|
| 13 |
+
Utility class for converting between numpy and torch.
|
| 14 |
+
"""
|
| 15 |
+
@staticmethod
|
| 16 |
+
def to_numpy(data):
|
| 17 |
+
"""Convert torch tensor to numpy array while preserving device and dtype info"""
|
| 18 |
+
is_torch = isinstance(data, torch.Tensor)
|
| 19 |
+
if is_torch:
|
| 20 |
+
device = data.device
|
| 21 |
+
dtype = data.dtype
|
| 22 |
+
return data.detach().cpu().numpy(), is_torch, device, dtype
|
| 23 |
+
return data, False, None, None
|
| 24 |
+
|
| 25 |
+
@staticmethod
|
| 26 |
+
def to_torch(data_np, is_torch, device=None, dtype=None):
|
| 27 |
+
"""Convert numpy array back to torch tensor if original was a tensor"""
|
| 28 |
+
if is_torch:
|
| 29 |
+
return torch.tensor(data_np, device=device, dtype=dtype)
|
| 30 |
+
return data_np
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class Embedding:
|
| 34 |
+
"""
|
| 35 |
+
Class for embedding methods to transform time series to target dimension.
|
| 36 |
+
"""
|
| 37 |
+
@staticmethod
|
| 38 |
+
def estimate_TDM_tau(data, acorr_threshold=1/np.e):
|
| 39 |
+
"""
|
| 40 |
+
Estimate tau using autocorrelation function with threshold method
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
data: Input data tensor of shape (seq_length, N)
|
| 44 |
+
acorr_threshold: Autocorrelation threshold
|
| 45 |
+
|
| 46 |
+
Returns:
|
| 47 |
+
Maximum estimated tau across all dimensions
|
| 48 |
+
"""
|
| 49 |
+
# Convert to numpy
|
| 50 |
+
data_np, _, _, _ = TimeSeriesProcessor.to_numpy(data)
|
| 51 |
+
|
| 52 |
+
seq_length, n_dims = data_np.shape
|
| 53 |
+
tau_vals = np.zeros(n_dims, dtype=int)
|
| 54 |
+
|
| 55 |
+
for dim in range(n_dims):
|
| 56 |
+
# Calculate autocorrelation
|
| 57 |
+
autocorr_vals = acf(data_np[:, dim] - np.mean(data_np[:, dim]), nlags=seq_length//2)
|
| 58 |
+
|
| 59 |
+
# Find first value below threshold (after lag 0)
|
| 60 |
+
below_threshold = np.where(autocorr_vals[1:] < acorr_threshold)[0]
|
| 61 |
+
if len(below_threshold) > 0:
|
| 62 |
+
tau_vals[dim] = below_threshold[0] + 1 # +1 because skipping lag 0
|
| 63 |
+
else:
|
| 64 |
+
tau_vals[dim] = 1 # Default if no value below threshold
|
| 65 |
+
|
| 66 |
+
return int(np.max(tau_vals))
|
| 67 |
+
|
| 68 |
+
@staticmethod
|
| 69 |
+
def estimate_pos_tau(data, max_lag=None, min_lag=None):
|
| 70 |
+
"""
|
| 71 |
+
Estimate autocorrelation time for positional embedding
|
| 72 |
+
|
| 73 |
+
Args:
|
| 74 |
+
data: Input data tensor of shape (seq_length, N)
|
| 75 |
+
max_lag: Maximum lag to consider
|
| 76 |
+
min_lag: Minimum lag to consider
|
| 77 |
+
|
| 78 |
+
Returns:
|
| 79 |
+
Maximum autocorrelation time across dimensions
|
| 80 |
+
"""
|
| 81 |
+
data_np, _, _, _ = TimeSeriesProcessor.to_numpy(data)
|
| 82 |
+
seq_length, n = data_np.shape
|
| 83 |
+
|
| 84 |
+
if max_lag is None:
|
| 85 |
+
max_lag = seq_length - 1
|
| 86 |
+
if min_lag is None:
|
| 87 |
+
min_lag = seq_length // 10
|
| 88 |
+
|
| 89 |
+
tau_vals = np.zeros(n, dtype=int)
|
| 90 |
+
|
| 91 |
+
for dim in range(n):
|
| 92 |
+
ts = data_np[:, dim] if not isinstance(data, torch.Tensor) else data[:, dim].cpu().numpy()
|
| 93 |
+
autocorr_vals = acf(ts - np.mean(ts), nlags=max_lag)
|
| 94 |
+
|
| 95 |
+
# Determine max autocorrelation with tau>tau_min
|
| 96 |
+
peaks, _ = find_peaks(autocorr_vals)
|
| 97 |
+
valid_peaks = [i for i in peaks if i > min_lag and i < len(autocorr_vals)]
|
| 98 |
+
if valid_peaks:
|
| 99 |
+
peak_values = autocorr_vals[valid_peaks]
|
| 100 |
+
max_peak_idx = np.argmax(peak_values)
|
| 101 |
+
tau_vals[dim] = valid_peaks[max_peak_idx]
|
| 102 |
+
else:
|
| 103 |
+
start_idx = min_lag + 1
|
| 104 |
+
segment = autocorr_vals[start_idx:]
|
| 105 |
+
tau_vals[dim] = start_idx + int(np.argmax(segment))
|
| 106 |
+
|
| 107 |
+
return np.max(tau_vals)
|
| 108 |
+
|
| 109 |
+
@staticmethod
|
| 110 |
+
def delay_embedding(data, model_dim, tau=None):
|
| 111 |
+
"""
|
| 112 |
+
Standard delay embedding with optimal tau
|
| 113 |
+
|
| 114 |
+
Args:
|
| 115 |
+
data: Input data tensor of shape (seq_length, N)
|
| 116 |
+
model_dim: Target dimension
|
| 117 |
+
tau: Time delay (if None, estimated from autocorrelation)
|
| 118 |
+
|
| 119 |
+
Returns:
|
| 120 |
+
Delay embedded data of shape (shortened_length, model_dim)
|
| 121 |
+
"""
|
| 122 |
+
seq_length, N_data = data.shape
|
| 123 |
+
needed_dims = model_dim - N_data
|
| 124 |
+
|
| 125 |
+
if needed_dims <= 0:
|
| 126 |
+
return data
|
| 127 |
+
|
| 128 |
+
processed_data = data.clone()
|
| 129 |
+
|
| 130 |
+
# Estimate tau if not provided
|
| 131 |
+
if tau is None:
|
| 132 |
+
tau = Embedding.estimate_TDM_tau(processed_data)
|
| 133 |
+
|
| 134 |
+
# Select the last column for embedding
|
| 135 |
+
ts = processed_data[:, -1].clone()
|
| 136 |
+
|
| 137 |
+
# Calculate starting index
|
| 138 |
+
start_idx = needed_dims * tau
|
| 139 |
+
|
| 140 |
+
# Handle case where start_idx is too large
|
| 141 |
+
if start_idx >= seq_length:
|
| 142 |
+
tau = max(1, seq_length // (needed_dims + 1))
|
| 143 |
+
start_idx = needed_dims * tau
|
| 144 |
+
|
| 145 |
+
# Create shortened data
|
| 146 |
+
shortened_data = processed_data[start_idx:].clone()
|
| 147 |
+
result = shortened_data
|
| 148 |
+
|
| 149 |
+
# Add delayed versions
|
| 150 |
+
for i in range(1, needed_dims + 1):
|
| 151 |
+
delayed = ts[start_idx - i * tau:seq_length - i * tau].unsqueeze(1)
|
| 152 |
+
result = torch.cat([result, delayed], dim=1)
|
| 153 |
+
|
| 154 |
+
return result
|
| 155 |
+
|
| 156 |
+
@staticmethod
|
| 157 |
+
def delay_embedding_random(data, model_dim, upper_tau=10, lower_tau=3):
|
| 158 |
+
"""
|
| 159 |
+
Random delay embedding with random tau values
|
| 160 |
+
|
| 161 |
+
Args:
|
| 162 |
+
data: Input data tensor of shape (seq_length, N)
|
| 163 |
+
model_dim: Target dimension
|
| 164 |
+
upper_tau: Upper bound for random tau values
|
| 165 |
+
lower_tau: Lower bound for random tau values
|
| 166 |
+
|
| 167 |
+
Returns:
|
| 168 |
+
Random delay embedded data
|
| 169 |
+
"""
|
| 170 |
+
seq_length, N_data = data.shape
|
| 171 |
+
needed_dims = model_dim - N_data
|
| 172 |
+
|
| 173 |
+
if needed_dims <= 0:
|
| 174 |
+
return data
|
| 175 |
+
|
| 176 |
+
processed_data = data.clone()
|
| 177 |
+
|
| 178 |
+
# Generate random tau values
|
| 179 |
+
taus = [random.randint(lower_tau, upper_tau) for _ in range(needed_dims)]
|
| 180 |
+
max_tau = max(taus)
|
| 181 |
+
|
| 182 |
+
# Select the first column for embedding
|
| 183 |
+
ts = processed_data[:, 0].clone()
|
| 184 |
+
|
| 185 |
+
# Create shortened data
|
| 186 |
+
result = processed_data[max_tau:].clone()
|
| 187 |
+
|
| 188 |
+
# Add delayed versions
|
| 189 |
+
for i in range(needed_dims):
|
| 190 |
+
delayed = ts[max_tau - taus[i]:seq_length - taus[i]].unsqueeze(1)
|
| 191 |
+
result = torch.cat([result, delayed], dim=1)
|
| 192 |
+
|
| 193 |
+
return result
|
| 194 |
+
|
| 195 |
+
@staticmethod
|
| 196 |
+
def zero_embedding(data, model_dim):
|
| 197 |
+
"""
|
| 198 |
+
Zero embedding: appends zeros to reach model dimensions
|
| 199 |
+
|
| 200 |
+
Args:
|
| 201 |
+
data: Input data tensor of shape (seq_length, N)
|
| 202 |
+
model_dim: Target dimension
|
| 203 |
+
|
| 204 |
+
Returns:
|
| 205 |
+
Tensor with zeros appended to reach model_dim
|
| 206 |
+
"""
|
| 207 |
+
seq_length, N_data = data.shape
|
| 208 |
+
needed_dims = model_dim - N_data
|
| 209 |
+
|
| 210 |
+
if needed_dims > 0:
|
| 211 |
+
zeros = torch.zeros(seq_length, needed_dims, device=data.device, dtype=data.dtype)
|
| 212 |
+
data = torch.cat([data, zeros], dim=1)
|
| 213 |
+
|
| 214 |
+
return data
|
| 215 |
+
|
| 216 |
+
@staticmethod
|
| 217 |
+
def positional_embedding(data, model_dim, tau=None):
|
| 218 |
+
"""
|
| 219 |
+
Positional embedding: adds sinusoidal signals based on autocorrelation time
|
| 220 |
+
|
| 221 |
+
Args:
|
| 222 |
+
data: Input data tensor of shape (seq_length, N)
|
| 223 |
+
model_dim: Target dimension
|
| 224 |
+
tau: Optional fixed value for tau. If None, estimated from data.
|
| 225 |
+
|
| 226 |
+
Returns:
|
| 227 |
+
Data with positional embeddings added
|
| 228 |
+
"""
|
| 229 |
+
seq_length, N_data = data.shape
|
| 230 |
+
needed_dims = model_dim - N_data
|
| 231 |
+
|
| 232 |
+
if needed_dims <= 0:
|
| 233 |
+
return data
|
| 234 |
+
|
| 235 |
+
if needed_dims != 1:
|
| 236 |
+
shifts = torch.linspace(0, np.pi/2, needed_dims, device=data.device)
|
| 237 |
+
else:
|
| 238 |
+
shifts = torch.tensor([0.0], device=data.device)
|
| 239 |
+
|
| 240 |
+
tau_val = tau if tau is not None else Embedding.estimate_pos_tau(data)
|
| 241 |
+
t = torch.arange(1, seq_length + 1, dtype=data.dtype, device=data.device)
|
| 242 |
+
|
| 243 |
+
result = data.clone()
|
| 244 |
+
for shift in shifts:
|
| 245 |
+
pos_feature = torch.sin(2 * np.pi / tau_val * t + shift).unsqueeze(1)
|
| 246 |
+
result = torch.cat([result, pos_feature], dim=1)
|
| 247 |
+
|
| 248 |
+
return result
|
| 249 |
+
|
| 250 |
+
@staticmethod
|
| 251 |
+
def apply_embedding(data, model_dim, method="pos_embedding", **kwargs):
|
| 252 |
+
"""
|
| 253 |
+
Apply selected embedding method to the data
|
| 254 |
+
|
| 255 |
+
Args:
|
| 256 |
+
data: Input data tensor of shape (seq_length, N)
|
| 257 |
+
model_dim: Target dimension
|
| 258 |
+
method: Embedding method ('pos_embedding', 'zero_embedding',
|
| 259 |
+
'delay_embedding', or 'delay_embedding_random')
|
| 260 |
+
**kwargs: Additional parameters to pass to the specific embedding method
|
| 261 |
+
|
| 262 |
+
Returns:
|
| 263 |
+
Embedded data
|
| 264 |
+
"""
|
| 265 |
+
if method == "pos_embedding":
|
| 266 |
+
return Embedding.positional_embedding(data, model_dim, **kwargs)
|
| 267 |
+
elif method == "zero_embedding":
|
| 268 |
+
return Embedding.zero_embedding(data, model_dim)
|
| 269 |
+
elif method == "delay_embedding":
|
| 270 |
+
return Embedding.delay_embedding(data, model_dim, **kwargs)
|
| 271 |
+
elif method == "delay_embedding_random":
|
| 272 |
+
return Embedding.delay_embedding_random(data, model_dim, **kwargs)
|
| 273 |
+
else:
|
| 274 |
+
raise ValueError(f"Unsupported embedding method: {method}")
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
class BoxCoxTransformer:
|
| 278 |
+
"""
|
| 279 |
+
Applies Box-Cox transformation to data for variance stabilization.
|
| 280 |
+
"""
|
| 281 |
+
def __init__(self, lambda_range=(-2, 2)):
|
| 282 |
+
"""
|
| 283 |
+
Initialize BoxCoxTransformer.
|
| 284 |
+
|
| 285 |
+
Args:
|
| 286 |
+
lambda_range: Range for lambda parameter search
|
| 287 |
+
"""
|
| 288 |
+
self.lambda_range = lambda_range
|
| 289 |
+
self.params = None
|
| 290 |
+
|
| 291 |
+
@staticmethod
|
| 292 |
+
def transform(data, lambda_range=(-2, 2)):
|
| 293 |
+
"""
|
| 294 |
+
Apply Box-Cox transformation to data for stabilization
|
| 295 |
+
|
| 296 |
+
Args:
|
| 297 |
+
data: Input data tensor of shape (seq_length, N)
|
| 298 |
+
lambda_range: Range for lambda parameter search
|
| 299 |
+
|
| 300 |
+
Returns:
|
| 301 |
+
Transformed data and parameters for inverse transformation
|
| 302 |
+
"""
|
| 303 |
+
# Convert to numpy
|
| 304 |
+
data_np, is_torch, device, dtype = TimeSeriesProcessor.to_numpy(data)
|
| 305 |
+
|
| 306 |
+
seq_length, n_dims = data_np.shape
|
| 307 |
+
transformed_data = np.zeros_like(data_np)
|
| 308 |
+
box_cox_params = []
|
| 309 |
+
|
| 310 |
+
for dim in range(n_dims):
|
| 311 |
+
# Add constant to ensure positivity
|
| 312 |
+
if np.min(data_np[:, dim]) <= 0:
|
| 313 |
+
offset = abs(np.min(data_np[:, dim])) + 1.2
|
| 314 |
+
data_shifted = data_np[:, dim] + offset
|
| 315 |
+
else:
|
| 316 |
+
offset = 1.2
|
| 317 |
+
data_shifted = data_np[:, dim] + offset
|
| 318 |
+
|
| 319 |
+
try:
|
| 320 |
+
# Find optimal lambda for Box-Cox transformation
|
| 321 |
+
transformed, lambda_param = stats.boxcox(data_shifted)
|
| 322 |
+
|
| 323 |
+
# Limit lambda to a reasonable range to prevent numerical issues
|
| 324 |
+
lambda_param = max(min(lambda_param, 2.0), -2.0)
|
| 325 |
+
|
| 326 |
+
# Recalculate transformation with bounded lambda for consistency
|
| 327 |
+
if abs(lambda_param) < 1e-8:
|
| 328 |
+
# For lambda near zero, use logarithmic transformation
|
| 329 |
+
transformed = np.log(data_shifted)
|
| 330 |
+
else:
|
| 331 |
+
transformed = (data_shifted ** lambda_param - 1) / lambda_param
|
| 332 |
+
|
| 333 |
+
# Store transformed data and parameters
|
| 334 |
+
transformed_data[:, dim] = transformed
|
| 335 |
+
except:
|
| 336 |
+
# If transformation fails, just use the original data
|
| 337 |
+
transformed_data[:, dim] = data_np[:, dim]
|
| 338 |
+
lambda_param = 1.0 # Identity transform
|
| 339 |
+
|
| 340 |
+
box_cox_params.append((lambda_param, offset))
|
| 341 |
+
|
| 342 |
+
# Convert back to torch if needed
|
| 343 |
+
return TimeSeriesProcessor.to_torch(transformed_data, is_torch, device, dtype), box_cox_params
|
| 344 |
+
|
| 345 |
+
@staticmethod
|
| 346 |
+
def inverse_transform(data, box_cox_params):
|
| 347 |
+
"""
|
| 348 |
+
Apply inverse Box-Cox transformation
|
| 349 |
+
|
| 350 |
+
Args:
|
| 351 |
+
data: Transformed data tensor
|
| 352 |
+
box_cox_params: Parameters from Box-Cox transformation
|
| 353 |
+
|
| 354 |
+
Returns:
|
| 355 |
+
Original scale data
|
| 356 |
+
"""
|
| 357 |
+
# Convert to numpy for computation
|
| 358 |
+
data_np, is_torch, device, dtype = TimeSeriesProcessor.to_numpy(data)
|
| 359 |
+
|
| 360 |
+
seq_length, n_dims = data_np.shape
|
| 361 |
+
inverse_data = np.zeros_like(data_np)
|
| 362 |
+
|
| 363 |
+
for dim in range(min(n_dims, len(box_cox_params))):
|
| 364 |
+
lambda_param, offset = box_cox_params[dim]
|
| 365 |
+
|
| 366 |
+
# Apply inverse transformation
|
| 367 |
+
if abs(lambda_param) < 1e-8:
|
| 368 |
+
# For lambda near zero, the transformation is logarithmic
|
| 369 |
+
inverse_data[:, dim] = np.exp(data_np[:, dim]) - offset
|
| 370 |
+
elif abs(lambda_param - 1.0) < 1e-8:
|
| 371 |
+
# For lambda=1 (identity transform), just subtract offset
|
| 372 |
+
inverse_data[:, dim] = data_np[:, dim] - offset
|
| 373 |
+
else:
|
| 374 |
+
# For other lambda values
|
| 375 |
+
base = lambda_param * data_np[:, dim] + 1
|
| 376 |
+
|
| 377 |
+
# Simple clipping approach to ensure base is positive
|
| 378 |
+
# This avoids complex numbers while preserving most data characteristics
|
| 379 |
+
base = np.maximum(base, 1e-10)
|
| 380 |
+
|
| 381 |
+
# Apply power transformation
|
| 382 |
+
result = base ** (1/lambda_param)
|
| 383 |
+
inverse_data[:, dim] = result - offset
|
| 384 |
+
|
| 385 |
+
# Convert back to torch if needed
|
| 386 |
+
return TimeSeriesProcessor.to_torch(inverse_data, is_torch, device, dtype)
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
class Detrending:
|
| 390 |
+
"""
|
| 391 |
+
Applies exponential detrending to time series data.
|
| 392 |
+
"""
|
| 393 |
+
@staticmethod
|
| 394 |
+
def exp_model(t, params):
|
| 395 |
+
"""
|
| 396 |
+
Exponential model for detrending
|
| 397 |
+
|
| 398 |
+
Args:
|
| 399 |
+
t: Time points
|
| 400 |
+
params: Model parameters [a, b, c]
|
| 401 |
+
|
| 402 |
+
Returns:
|
| 403 |
+
Model values
|
| 404 |
+
"""
|
| 405 |
+
a, b, c = params
|
| 406 |
+
return a * (t ** b) + c
|
| 407 |
+
|
| 408 |
+
@staticmethod
|
| 409 |
+
def fit_objective(params, data):
|
| 410 |
+
"""
|
| 411 |
+
Objective function for exponential model fitting
|
| 412 |
+
|
| 413 |
+
Args:
|
| 414 |
+
params: Model parameters
|
| 415 |
+
data: Data to fit
|
| 416 |
+
|
| 417 |
+
Returns:
|
| 418 |
+
Sum of squared errors
|
| 419 |
+
"""
|
| 420 |
+
t = np.arange(1, len(data) + 1)
|
| 421 |
+
predicted = Detrending.exp_model(t, params)
|
| 422 |
+
return np.sum((data - predicted) ** 2)
|
| 423 |
+
|
| 424 |
+
@staticmethod
|
| 425 |
+
def apply_detrending(data):
|
| 426 |
+
"""
|
| 427 |
+
Apply exponential detrending to data
|
| 428 |
+
|
| 429 |
+
Args:
|
| 430 |
+
data: Input data tensor of shape (seq_length, N)
|
| 431 |
+
|
| 432 |
+
Returns:
|
| 433 |
+
Detrended data and parameters for inverse transformation
|
| 434 |
+
"""
|
| 435 |
+
# Convert to numpy
|
| 436 |
+
data_np, is_torch, device, dtype = TimeSeriesProcessor.to_numpy(data)
|
| 437 |
+
|
| 438 |
+
seq_length, n_dims = data_np.shape
|
| 439 |
+
detrended_data = np.zeros_like(data_np)
|
| 440 |
+
detrending_params = []
|
| 441 |
+
|
| 442 |
+
for dim in range(n_dims):
|
| 443 |
+
# Define the objective function for this dimension
|
| 444 |
+
objective = lambda params: Detrending.fit_objective(params, data_np[:, dim])
|
| 445 |
+
|
| 446 |
+
# Initial parameter guess
|
| 447 |
+
initial_params = [0.0, 1.0, data_np[0,dim]]
|
| 448 |
+
|
| 449 |
+
# Bounds for parameters
|
| 450 |
+
bounds = [(None, None), (0.1, 3.0), (None, None)]
|
| 451 |
+
|
| 452 |
+
# Optimize
|
| 453 |
+
result = optimize.minimize(
|
| 454 |
+
objective,
|
| 455 |
+
initial_params,
|
| 456 |
+
method='L-BFGS-B',
|
| 457 |
+
bounds=bounds,
|
| 458 |
+
options={
|
| 459 |
+
'maxiter': 1000,
|
| 460 |
+
'gtol': 1e-6,
|
| 461 |
+
'maxfun': 1500,
|
| 462 |
+
'maxcor': 10
|
| 463 |
+
}
|
| 464 |
+
)
|
| 465 |
+
optimal_params = np.round(result.x, 3)
|
| 466 |
+
|
| 467 |
+
# Calculate trend and detrend the data
|
| 468 |
+
t = np.arange(1, seq_length + 1)
|
| 469 |
+
trend = Detrending.exp_model(t, optimal_params)
|
| 470 |
+
detrended_data[:, dim] = data_np[:, dim] - trend
|
| 471 |
+
|
| 472 |
+
# Store parameters for inverse transformation
|
| 473 |
+
detrending_params.append(optimal_params)
|
| 474 |
+
|
| 475 |
+
# Convert back to torch if needed
|
| 476 |
+
return TimeSeriesProcessor.to_torch(detrended_data, is_torch, device, dtype), detrending_params
|
| 477 |
+
|
| 478 |
+
@staticmethod
|
| 479 |
+
def apply_detrending_inverse(context, data, detrending_params):
|
| 480 |
+
"""
|
| 481 |
+
Apply inverse detrending to forecasted data
|
| 482 |
+
|
| 483 |
+
Args:
|
| 484 |
+
context: Original context data
|
| 485 |
+
data: Forecasted data
|
| 486 |
+
detrending_params: Parameters from detrending
|
| 487 |
+
|
| 488 |
+
Returns:
|
| 489 |
+
Forecasted data with trend restored
|
| 490 |
+
"""
|
| 491 |
+
# Convert to numpy for computation
|
| 492 |
+
data_np, is_torch, device, dtype = TimeSeriesProcessor.to_numpy(data)
|
| 493 |
+
context_np, _, _, _ = TimeSeriesProcessor.to_numpy(context)
|
| 494 |
+
|
| 495 |
+
# Get dimensions
|
| 496 |
+
forecast_length, n_dims = data_np.shape
|
| 497 |
+
context_length = len(context_np)
|
| 498 |
+
|
| 499 |
+
# Create time points for the forecast horizon
|
| 500 |
+
t = np.arange(context_length + 1, context_length + forecast_length + 1)
|
| 501 |
+
|
| 502 |
+
# Add trend back to each dimension
|
| 503 |
+
for dim in range(min(n_dims, len(detrending_params))):
|
| 504 |
+
params = detrending_params[dim]
|
| 505 |
+
trend = Detrending.exp_model(t, params)
|
| 506 |
+
data_np[:, dim] = data_np[:, dim] + trend
|
| 507 |
+
|
| 508 |
+
# Convert back to torch if needed
|
| 509 |
+
return TimeSeriesProcessor.to_torch(data_np, is_torch, device, dtype)
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
def estimate_initial_condition(initial_x, context_embedded):
|
| 513 |
+
"""
|
| 514 |
+
Estimate full initial condition from partial observation
|
| 515 |
+
|
| 516 |
+
Args:
|
| 517 |
+
initial_x: Partial initial condition of shape (N_partial,)
|
| 518 |
+
context_embedded: Context data of shape (seq_length, N)
|
| 519 |
+
|
| 520 |
+
Returns:
|
| 521 |
+
Complete initial condition of shape (N,)
|
| 522 |
+
"""
|
| 523 |
+
T, N = context_embedded.shape
|
| 524 |
+
N_partial = initial_x.shape[0]
|
| 525 |
+
|
| 526 |
+
assert N_partial <= N, "Initial condition dimension must be <= embedding dimension"
|
| 527 |
+
|
| 528 |
+
# Find timestep with closest match to initial condition in first N_partial dimensions
|
| 529 |
+
distances = torch.zeros(T, device=initial_x.device)
|
| 530 |
+
for t in range(T):
|
| 531 |
+
distances[t] = torch.sum((context_embedded[t, :N_partial] - initial_x) ** 2)
|
| 532 |
+
|
| 533 |
+
closest_t = torch.argmin(distances)
|
| 534 |
+
|
| 535 |
+
# Combine initial condition with closest matching state
|
| 536 |
+
return torch.cat([initial_x, context_embedded[closest_t, N_partial:]])
|
dynamix/utilities.py
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from huggingface_hub import hf_hub_download
|
| 3 |
+
from safetensors.torch import load_file
|
| 4 |
+
from dynamix.dynamix import DynaMix
|
| 5 |
+
import plotly.graph_objects as go
|
| 6 |
+
import plotly.subplots as sp
|
| 7 |
+
import numpy as np
|
| 8 |
+
|
| 9 |
+
"""
|
| 10 |
+
Loading models from HuggingFace Hub
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
def load_hf_model_config(model_name):
|
| 14 |
+
"""Load model configuration from HuggingFace Hub"""
|
| 15 |
+
|
| 16 |
+
config_path = hf_hub_download(
|
| 17 |
+
repo_id="DurstewitzLab/dynamix",
|
| 18 |
+
filename="config_" + model_name.replace("dynamix-", "") + ".json"
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
with open(config_path, 'r') as f:
|
| 22 |
+
model_config = json.load(f)
|
| 23 |
+
|
| 24 |
+
return model_config
|
| 25 |
+
|
| 26 |
+
def load_hf_model(model_name):
|
| 27 |
+
"""Load a specific DynaMix model with its configuration"""
|
| 28 |
+
try:
|
| 29 |
+
# Load model configuration
|
| 30 |
+
model_config = load_hf_model_config(model_name)
|
| 31 |
+
architecture = model_config["architecture"]
|
| 32 |
+
|
| 33 |
+
# Extract hyperparameters from config
|
| 34 |
+
M = architecture["M"] # Latent state dimension
|
| 35 |
+
N = architecture["N"] # Observation space dimension
|
| 36 |
+
EXPERTS = architecture["Experts"] # Number of experts
|
| 37 |
+
P = architecture["P"] # Number of ReLU dimensions
|
| 38 |
+
HIDDEN_DIM = architecture["hidden_dim"]
|
| 39 |
+
expert_type = architecture["expert_type"]
|
| 40 |
+
probabilistic_expert = architecture["probabilistic_expert"]
|
| 41 |
+
|
| 42 |
+
# Create model with config parameters
|
| 43 |
+
model = DynaMix(
|
| 44 |
+
M=M,
|
| 45 |
+
N=N,
|
| 46 |
+
Experts=EXPERTS,
|
| 47 |
+
expert_type=expert_type,
|
| 48 |
+
P=P,
|
| 49 |
+
hidden_dim=HIDDEN_DIM,
|
| 50 |
+
probabilistic_expert=probabilistic_expert,
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
# Load model weights
|
| 54 |
+
model_path = hf_hub_download(
|
| 55 |
+
repo_id="DurstewitzLab/dynamix",
|
| 56 |
+
filename=model_name + ".safetensors",
|
| 57 |
+
)
|
| 58 |
+
model_state_dict = load_file(model_path)
|
| 59 |
+
model.load_state_dict(model_state_dict)
|
| 60 |
+
model.eval()
|
| 61 |
+
|
| 62 |
+
except Exception as e:
|
| 63 |
+
print(f"Error loading model {model_name}: {e}")
|
| 64 |
+
raise ValueError(f"Model {model_name} not found")
|
| 65 |
+
|
| 66 |
+
return model
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
# Model selection function
|
| 70 |
+
def auto_model_selection(context):
|
| 71 |
+
"""
|
| 72 |
+
Select the model to use for forecasting
|
| 73 |
+
"""
|
| 74 |
+
if context.shape[1] == 1:
|
| 75 |
+
return "dynamix-6d-alrnn-v1.0"
|
| 76 |
+
elif context.shape[1] >= 2 and context.shape[1] <= 3:
|
| 77 |
+
return "dynamix-3d-alrnn-v1.0"
|
| 78 |
+
elif context.shape[1] >= 6:
|
| 79 |
+
return "dynamix-6d-alrnn-v1.0"
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
"""
|
| 84 |
+
Plotting functions
|
| 85 |
+
"""
|
| 86 |
+
|
| 87 |
+
def create_forecast_plot(values, reconstruction_ts_np, horizon):
|
| 88 |
+
"""
|
| 89 |
+
Create a Plotly figure with dark theme styling matching the reference image
|
| 90 |
+
"""
|
| 91 |
+
dims = reconstruction_ts_np.shape[-1]
|
| 92 |
+
plot_dims = min(dims, 15) # plot up to 15 dimensions
|
| 93 |
+
|
| 94 |
+
context_time = np.arange(-len(values), 0)
|
| 95 |
+
forecast_time = np.arange(0, int(horizon))
|
| 96 |
+
|
| 97 |
+
# Create subplots
|
| 98 |
+
# Adjust spacing based on number of dimensions
|
| 99 |
+
if plot_dims <= 3:
|
| 100 |
+
vertical_spacing = 0.1
|
| 101 |
+
elif plot_dims <= 6:
|
| 102 |
+
vertical_spacing = 0.05
|
| 103 |
+
elif plot_dims <= 15:
|
| 104 |
+
vertical_spacing = 0.02
|
| 105 |
+
|
| 106 |
+
fig = sp.make_subplots(
|
| 107 |
+
rows=plot_dims,
|
| 108 |
+
cols=1,
|
| 109 |
+
vertical_spacing=vertical_spacing
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
# Add traces for each dimension
|
| 113 |
+
for d in range(plot_dims):
|
| 114 |
+
# Historical data
|
| 115 |
+
historical_trace = go.Scatter(
|
| 116 |
+
x=context_time,
|
| 117 |
+
y=values[:, d],
|
| 118 |
+
mode='lines',
|
| 119 |
+
line=dict(color='#4169E1', width=2.5),
|
| 120 |
+
name=f"context_{d+1}",
|
| 121 |
+
showlegend=False,
|
| 122 |
+
hovertemplate=f"context_{d+1}<br>x: %{{x}}<br>y: %{{y}}<extra></extra>"
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
# Forecast
|
| 126 |
+
forecast_trace = go.Scatter(
|
| 127 |
+
x=forecast_time,
|
| 128 |
+
y=reconstruction_ts_np[:, d],
|
| 129 |
+
mode='lines',
|
| 130 |
+
line=dict(color='#FF4242', width=2.5),
|
| 131 |
+
name=f"forecast_{d+1}",
|
| 132 |
+
showlegend=False,
|
| 133 |
+
hovertemplate=f"forecast_{d+1}<br>x: %{{x}}<br>y: %{{y}}<extra></extra>"
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
fig.add_trace(historical_trace, row=d+1, col=1)
|
| 137 |
+
fig.add_trace(forecast_trace, row=d+1, col=1)
|
| 138 |
+
|
| 139 |
+
fig.update_layout(
|
| 140 |
+
plot_bgcolor='#1f2937',
|
| 141 |
+
paper_bgcolor='#1f2937',
|
| 142 |
+
font=dict(color='white'),
|
| 143 |
+
showlegend=False,
|
| 144 |
+
title=None,
|
| 145 |
+
margin=dict(l=50, r=50, t=30, b=50),
|
| 146 |
+
xaxis=dict(
|
| 147 |
+
gridcolor='rgba(255, 255, 255, 0.2)',
|
| 148 |
+
zerolinecolor='rgba(255, 255, 255, 0.2)',
|
| 149 |
+
showgrid=True
|
| 150 |
+
),
|
| 151 |
+
yaxis=dict(
|
| 152 |
+
gridcolor='rgba(255, 255, 255, 0.2)',
|
| 153 |
+
zerolinecolor='rgba(255, 255, 255, 0.2)',
|
| 154 |
+
showgrid=True,
|
| 155 |
+
),
|
| 156 |
+
height=300 if plot_dims == 1 else 250 * plot_dims,
|
| 157 |
+
width=None
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
for i in range(plot_dims):
|
| 161 |
+
fig.update_xaxes(
|
| 162 |
+
gridcolor='rgba(255, 255, 255, 0.2)',
|
| 163 |
+
zerolinecolor='rgba(255, 255, 255, 0.2)',
|
| 164 |
+
showgrid=True,
|
| 165 |
+
row=i+1, col=1
|
| 166 |
+
)
|
| 167 |
+
fig.update_yaxes(
|
| 168 |
+
gridcolor='rgba(255, 255, 255, 0.2)',
|
| 169 |
+
zerolinecolor='rgba(255, 255, 255, 0.2)',
|
| 170 |
+
showgrid=True,
|
| 171 |
+
row=i+1, col=1
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
return fig
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=1.10.0
|
| 2 |
+
numpy>=1.20.0
|
| 3 |
+
matplotlib>=3.4.0
|
| 4 |
+
plotly>=6.3.0
|
| 5 |
+
scipy>=1.7.0
|
| 6 |
+
pandas>=1.3.0
|
| 7 |
+
safetensors>=0.4.0
|
| 8 |
+
huggingface_hub>=0.19.0
|
| 9 |
+
statsmodels>=0.14.4
|
| 10 |
+
gradio>=5.43.1
|