Spaces:
Build error
Build error
Update interim.py
Browse files- interim.py +73 -126
interim.py
CHANGED
|
@@ -1,13 +1,15 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
import requests
|
| 3 |
import streamlit as st
|
| 4 |
-
from langchain.chains import
|
| 5 |
from langchain.prompts import PromptTemplate
|
| 6 |
from langchain_groq import ChatGroq
|
| 7 |
from langchain.document_loaders import PDFPlumberLoader
|
| 8 |
from langchain_experimental.text_splitter import SemanticChunker
|
| 9 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 10 |
from langchain_chroma import Chroma
|
|
|
|
| 11 |
|
| 12 |
# Set API Keys
|
| 13 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
|
@@ -16,74 +18,104 @@ os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
|
| 16 |
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
|
| 17 |
rag_llm = ChatGroq(model="mixtral-8x7b-32768")
|
| 18 |
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
# Step 1: Choose PDF Source
|
| 22 |
-
|
| 23 |
-
pdf_path = None
|
| 24 |
-
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0)
|
| 25 |
|
| 26 |
if pdf_source == "Upload a PDF file":
|
| 27 |
uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
|
| 28 |
if uploaded_file:
|
| 29 |
-
|
|
|
|
| 30 |
f.write(uploaded_file.getbuffer())
|
| 31 |
-
|
|
|
|
|
|
|
| 32 |
|
| 33 |
elif pdf_source == "Enter a PDF URL":
|
| 34 |
-
pdf_url = st.text_input("Enter PDF URL:")
|
| 35 |
-
if pdf_url:
|
| 36 |
with st.spinner("Downloading PDF..."):
|
| 37 |
try:
|
| 38 |
response = requests.get(pdf_url)
|
| 39 |
if response.status_code == 200:
|
| 40 |
-
|
|
|
|
| 41 |
f.write(response.content)
|
| 42 |
-
|
|
|
|
|
|
|
| 43 |
st.success("β
PDF Downloaded Successfully!")
|
| 44 |
else:
|
| 45 |
st.error("β Failed to download PDF. Check the URL.")
|
| 46 |
-
pdf_path = None
|
| 47 |
except Exception as e:
|
| 48 |
st.error(f"Error downloading PDF: {e}")
|
| 49 |
-
pdf_path = None
|
| 50 |
-
else:
|
| 51 |
-
pdf_path = None
|
| 52 |
|
| 53 |
# Step 2: Process PDF
|
| 54 |
-
if pdf_path:
|
| 55 |
-
with st.spinner("Loading PDF..."):
|
| 56 |
-
loader = PDFPlumberLoader(pdf_path)
|
| 57 |
docs = loader.load()
|
| 58 |
-
|
| 59 |
-
|
|
|
|
| 60 |
|
| 61 |
-
|
|
|
|
| 62 |
with st.spinner("Chunking the document..."):
|
| 63 |
model_name = "nomic-ai/modernbert-embed-base"
|
| 64 |
-
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'})
|
| 65 |
-
|
| 66 |
text_splitter = SemanticChunker(embedding_model)
|
| 67 |
-
documents = text_splitter.split_documents(
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
# Step 4: Setup Vectorstore
|
| 72 |
with st.spinner("Creating vector store..."):
|
| 73 |
vector_store = Chroma(
|
| 74 |
collection_name="deepseek_collection",
|
| 75 |
collection_metadata={"hnsw:space": "cosine"},
|
| 76 |
-
embedding_function=embedding_model
|
|
|
|
| 77 |
)
|
| 78 |
-
vector_store.add_documents(documents)
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
| 83 |
query = st.text_input("π Enter a Query:")
|
|
|
|
| 84 |
if query:
|
| 85 |
with st.spinner("Retrieving relevant contexts..."):
|
| 86 |
-
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
| 87 |
contexts = retriever.invoke(query)
|
| 88 |
context_texts = [doc.page_content for doc in contexts]
|
| 89 |
|
|
@@ -91,96 +123,11 @@ if pdf_path:
|
|
| 91 |
for i, text in enumerate(context_texts, 1):
|
| 92 |
st.write(f"**Context {i}:** {text[:500]}...")
|
| 93 |
|
| 94 |
-
# Step 6:
|
| 95 |
-
with st.spinner("Evaluating context relevancy..."):
|
| 96 |
-
relevancy_prompt = PromptTemplate(
|
| 97 |
-
input_variables=["retriever_query", "context"],
|
| 98 |
-
template="""You are an expert judge. Assign relevancy scores (0 or 1) for each context to answer the query.
|
| 99 |
-
|
| 100 |
-
CONTEXT LIST:
|
| 101 |
-
{context}
|
| 102 |
-
|
| 103 |
-
QUERY:
|
| 104 |
-
{retriever_query}
|
| 105 |
-
|
| 106 |
-
RESPONSE (JSON):
|
| 107 |
-
[{{"content": 1, "score": <0 or 1>, "reasoning": "<explanation>"}},
|
| 108 |
-
{{"content": 2, "score": <0 or 1>, "reasoning": "<explanation>"}},
|
| 109 |
-
...]"""
|
| 110 |
-
)
|
| 111 |
-
context_relevancy_chain = LLMChain(llm=llm_judge, prompt=relevancy_prompt, output_key="relevancy_response")
|
| 112 |
-
relevancy_response = context_relevancy_chain.invoke({"context": context_texts, "retriever_query": query})
|
| 113 |
-
|
| 114 |
-
st.success("β
**Context Relevancy Evaluated!**")
|
| 115 |
-
st.json(relevancy_response['relevancy_response'])
|
| 116 |
-
|
| 117 |
-
# Step 7: Selecting Relevant Contexts
|
| 118 |
-
with st.spinner("Selecting the most relevant contexts..."):
|
| 119 |
-
relevant_prompt = PromptTemplate(
|
| 120 |
-
input_variables=["relevancy_response"],
|
| 121 |
-
template="""Extract contexts with score 0 from the relevancy response.
|
| 122 |
-
|
| 123 |
-
RELEVANCY RESPONSE:
|
| 124 |
-
{relevancy_response}
|
| 125 |
-
|
| 126 |
-
RESPONSE (JSON):
|
| 127 |
-
[{{"content": <content number>}}]
|
| 128 |
-
"""
|
| 129 |
-
)
|
| 130 |
-
pick_relevant_context_chain = LLMChain(llm=llm_judge, prompt=relevant_prompt, output_key="context_number")
|
| 131 |
-
relevant_response = pick_relevant_context_chain.invoke({"relevancy_response": relevancy_response['relevancy_response']})
|
| 132 |
-
|
| 133 |
-
st.success("β
**Relevant Contexts Selected!**")
|
| 134 |
-
st.json(relevant_response['context_number'])
|
| 135 |
-
|
| 136 |
-
# Step 8: Retrieving Context for Response Generation
|
| 137 |
-
with st.spinner("Retrieving final context..."):
|
| 138 |
-
context_prompt = PromptTemplate(
|
| 139 |
-
input_variables=["context_number", "context"],
|
| 140 |
-
template="""Extract actual content for the selected context numbers.
|
| 141 |
-
|
| 142 |
-
CONTEXT NUMBERS:
|
| 143 |
-
{context_number}
|
| 144 |
-
|
| 145 |
-
CONTENT LIST:
|
| 146 |
-
{context}
|
| 147 |
-
|
| 148 |
-
RESPONSE (JSON):
|
| 149 |
-
[{{"context_number": <content number>, "relevant_content": "<actual context>"}}]
|
| 150 |
-
"""
|
| 151 |
-
)
|
| 152 |
-
relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts")
|
| 153 |
-
final_contexts = relevant_contexts_chain.invoke({"context_number": relevant_response['context_number'], "context": context_texts})
|
| 154 |
-
|
| 155 |
-
st.success("β
**Final Contexts Retrieved!**")
|
| 156 |
-
st.json(final_contexts['relevant_contexts'])
|
| 157 |
-
|
| 158 |
-
# Step 9: Generate Final Response
|
| 159 |
with st.spinner("Generating the final answer..."):
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
CONTEXT:
|
| 168 |
-
{context}
|
| 169 |
-
|
| 170 |
-
ANSWER:
|
| 171 |
-
"""
|
| 172 |
-
)
|
| 173 |
-
response_chain = LLMChain(llm=rag_llm, prompt=rag_prompt, output_key="final_response")
|
| 174 |
-
final_response = response_chain.invoke({"query": query, "context": final_contexts['relevant_contexts']})
|
| 175 |
-
|
| 176 |
-
st.success("β
**Final Response Generated!**")
|
| 177 |
-
st.success(final_response['final_response'])
|
| 178 |
-
|
| 179 |
-
# Step 10: Display Workflow Breakdown
|
| 180 |
-
st.write("π **Workflow Breakdown:**")
|
| 181 |
-
st.json({
|
| 182 |
-
"Context Relevancy Evaluation": relevancy_response["relevancy_response"],
|
| 183 |
-
"Relevant Contexts": relevant_response["context_number"],
|
| 184 |
-
"Extracted Contexts": final_contexts["relevant_contexts"],
|
| 185 |
-
"Final Answer": final_response["final_response"]
|
| 186 |
-
})
|
|
|
|
| 1 |
import os
|
| 2 |
+
import chromadb
|
| 3 |
import requests
|
| 4 |
import streamlit as st
|
| 5 |
+
from langchain.chains import LLMChain
|
| 6 |
from langchain.prompts import PromptTemplate
|
| 7 |
from langchain_groq import ChatGroq
|
| 8 |
from langchain.document_loaders import PDFPlumberLoader
|
| 9 |
from langchain_experimental.text_splitter import SemanticChunker
|
| 10 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 11 |
from langchain_chroma import Chroma
|
| 12 |
+
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
|
| 13 |
|
| 14 |
# Set API Keys
|
| 15 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
|
|
|
| 18 |
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
|
| 19 |
rag_llm = ChatGroq(model="mixtral-8x7b-32768")
|
| 20 |
|
| 21 |
+
llm_judge.verbose = True
|
| 22 |
+
rag_llm.verbose = True
|
| 23 |
+
|
| 24 |
+
# Clear ChromaDB cache to fix tenant issue
|
| 25 |
+
chromadb.api.client.SharedSystemClient.clear_system_cache()
|
| 26 |
+
|
| 27 |
+
st.title("Blah")
|
| 28 |
+
|
| 29 |
+
# **Initialize session state variables**
|
| 30 |
+
if "pdf_path" not in st.session_state:
|
| 31 |
+
st.session_state.pdf_path = None
|
| 32 |
+
if "pdf_loaded" not in st.session_state:
|
| 33 |
+
st.session_state.pdf_loaded = False
|
| 34 |
+
if "chunked" not in st.session_state:
|
| 35 |
+
st.session_state.chunked = False
|
| 36 |
+
if "vector_created" not in st.session_state:
|
| 37 |
+
st.session_state.vector_created = False
|
| 38 |
+
if "vector_store_path" not in st.session_state:
|
| 39 |
+
st.session_state.vector_store_path = "./chroma_langchain_db"
|
| 40 |
+
if "vector_store" not in st.session_state:
|
| 41 |
+
st.session_state.vector_store = None
|
| 42 |
+
if "documents" not in st.session_state:
|
| 43 |
+
st.session_state.documents = None
|
| 44 |
|
| 45 |
# Step 1: Choose PDF Source
|
| 46 |
+
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
|
|
|
|
|
|
|
| 47 |
|
| 48 |
if pdf_source == "Upload a PDF file":
|
| 49 |
uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
|
| 50 |
if uploaded_file:
|
| 51 |
+
st.session_state.pdf_path = "temp.pdf"
|
| 52 |
+
with open(st.session_state.pdf_path, "wb") as f:
|
| 53 |
f.write(uploaded_file.getbuffer())
|
| 54 |
+
st.session_state.pdf_loaded = False
|
| 55 |
+
st.session_state.chunked = False
|
| 56 |
+
st.session_state.vector_created = False
|
| 57 |
|
| 58 |
elif pdf_source == "Enter a PDF URL":
|
| 59 |
+
pdf_url = st.text_input("Enter PDF URL:", value="https://arxiv.org/pdf/2406.06998")
|
| 60 |
+
if pdf_url and st.session_state.pdf_path is None:
|
| 61 |
with st.spinner("Downloading PDF..."):
|
| 62 |
try:
|
| 63 |
response = requests.get(pdf_url)
|
| 64 |
if response.status_code == 200:
|
| 65 |
+
st.session_state.pdf_path = "temp.pdf"
|
| 66 |
+
with open(st.session_state.pdf_path, "wb") as f:
|
| 67 |
f.write(response.content)
|
| 68 |
+
st.session_state.pdf_loaded = False
|
| 69 |
+
st.session_state.chunked = False
|
| 70 |
+
st.session_state.vector_created = False
|
| 71 |
st.success("β
PDF Downloaded Successfully!")
|
| 72 |
else:
|
| 73 |
st.error("β Failed to download PDF. Check the URL.")
|
|
|
|
| 74 |
except Exception as e:
|
| 75 |
st.error(f"Error downloading PDF: {e}")
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
# Step 2: Process PDF
|
| 78 |
+
if st.session_state.pdf_path and not st.session_state.pdf_loaded:
|
| 79 |
+
with st.spinner("Loading and processing PDF..."):
|
| 80 |
+
loader = PDFPlumberLoader(st.session_state.pdf_path)
|
| 81 |
docs = loader.load()
|
| 82 |
+
st.session_state.documents = docs
|
| 83 |
+
st.session_state.pdf_loaded = True
|
| 84 |
+
st.success(f"β
**PDF Loaded!** Total Pages: {len(docs)}")
|
| 85 |
|
| 86 |
+
# Step 3: Chunking
|
| 87 |
+
if st.session_state.pdf_loaded and not st.session_state.chunked and st.session_state.documents:
|
| 88 |
with st.spinner("Chunking the document..."):
|
| 89 |
model_name = "nomic-ai/modernbert-embed-base"
|
| 90 |
+
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': False})
|
|
|
|
| 91 |
text_splitter = SemanticChunker(embedding_model)
|
| 92 |
+
documents = text_splitter.split_documents(st.session_state.documents)
|
| 93 |
+
st.session_state.documents = documents # Store chunked docs
|
| 94 |
+
st.session_state.chunked = True
|
| 95 |
+
st.success(f"β
**Document Chunked!** Total Chunks: {len(documents)}")
|
| 96 |
|
| 97 |
+
# Step 4: Setup Vectorstore
|
| 98 |
+
if st.session_state.chunked and not st.session_state.vector_created:
|
|
|
|
| 99 |
with st.spinner("Creating vector store..."):
|
| 100 |
vector_store = Chroma(
|
| 101 |
collection_name="deepseek_collection",
|
| 102 |
collection_metadata={"hnsw:space": "cosine"},
|
| 103 |
+
embedding_function=embedding_model,
|
| 104 |
+
persist_directory=st.session_state.vector_store_path
|
| 105 |
)
|
| 106 |
+
vector_store.add_documents(st.session_state.documents)
|
| 107 |
+
num_documents = len(vector_store.get()["documents"])
|
| 108 |
+
st.session_state.vector_store = vector_store
|
| 109 |
+
st.session_state.vector_created = True
|
| 110 |
+
st.success(f"β
**Vector Store Created!** Total documents stored: {num_documents}")
|
| 111 |
+
|
| 112 |
+
# Step 5: Query Input
|
| 113 |
+
if st.session_state.vector_created and st.session_state.vector_store:
|
| 114 |
query = st.text_input("π Enter a Query:")
|
| 115 |
+
|
| 116 |
if query:
|
| 117 |
with st.spinner("Retrieving relevant contexts..."):
|
| 118 |
+
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
| 119 |
contexts = retriever.invoke(query)
|
| 120 |
context_texts = [doc.page_content for doc in contexts]
|
| 121 |
|
|
|
|
| 123 |
for i, text in enumerate(context_texts, 1):
|
| 124 |
st.write(f"**Context {i}:** {text[:500]}...")
|
| 125 |
|
| 126 |
+
# **Step 6: Generate Final Response**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
with st.spinner("Generating the final answer..."):
|
| 128 |
+
final_prompt = PromptTemplate(input_variables=["query", "context"], template=rag_prompt)
|
| 129 |
+
response_chain = LLMChain(llm=rag_llm, prompt=final_prompt, output_key="final_response")
|
| 130 |
+
final_response = response_chain.invoke({"query": query, "context": context_texts})
|
| 131 |
+
|
| 132 |
+
st.subheader("π₯ RAG Final Response")
|
| 133 |
+
st.success(final_response['final_response'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|