Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,16 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import os
|
| 3 |
import requests
|
|
|
|
| 4 |
import chromadb
|
| 5 |
from langchain.document_loaders import PDFPlumberLoader
|
| 6 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 7 |
from langchain_experimental.text_splitter import SemanticChunker
|
| 8 |
from langchain_chroma import Chroma
|
| 9 |
-
from langchain.chains import LLMChain
|
| 10 |
from langchain.prompts import PromptTemplate
|
| 11 |
from langchain_groq import ChatGroq
|
|
|
|
| 12 |
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
|
| 13 |
|
| 14 |
# ----------------- Streamlit UI Setup -----------------
|
|
@@ -18,8 +20,9 @@ st.title("Blah-1")
|
|
| 18 |
# ----------------- API Keys -----------------
|
| 19 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
| 20 |
|
| 21 |
-
# -----------------
|
| 22 |
-
|
|
|
|
| 23 |
|
| 24 |
# ----------------- Initialize Session State -----------------
|
| 25 |
if "pdf_loaded" not in st.session_state:
|
|
@@ -33,22 +36,41 @@ if "processed_chunks" not in st.session_state:
|
|
| 33 |
if "vector_store" not in st.session_state:
|
| 34 |
st.session_state.vector_store = None
|
| 35 |
|
| 36 |
-
# -----------------
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
#
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
# ----------------- PDF Selection -----------------
|
| 45 |
-
#st.subheader("PDF Selection")
|
| 46 |
pdf_source = st.radio("Choose a PDF source:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
|
| 47 |
|
| 48 |
if pdf_source == "Upload a PDF file":
|
| 49 |
uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
|
| 50 |
if uploaded_file:
|
| 51 |
-
st.session_state.pdf_path = "temp.pdf"
|
| 52 |
with open(st.session_state.pdf_path, "wb") as f:
|
| 53 |
f.write(uploaded_file.getbuffer())
|
| 54 |
st.session_state.pdf_loaded = False
|
|
@@ -62,7 +84,7 @@ elif pdf_source == "Enter a PDF URL":
|
|
| 62 |
try:
|
| 63 |
response = requests.get(pdf_url)
|
| 64 |
if response.status_code == 200:
|
| 65 |
-
st.session_state.pdf_path = "temp.pdf"
|
| 66 |
with open(st.session_state.pdf_path, "wb") as f:
|
| 67 |
f.write(response.content)
|
| 68 |
st.session_state.pdf_loaded = False
|
|
@@ -79,11 +101,20 @@ if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
|
|
| 79 |
with st.spinner("π Processing document... Please wait."):
|
| 80 |
loader = PDFPlumberLoader(st.session_state.pdf_path)
|
| 81 |
docs = loader.load()
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
# Embedding Model
|
| 85 |
model_name = "nomic-ai/modernbert-embed-base"
|
| 86 |
-
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs
|
| 87 |
|
| 88 |
# Prevent unnecessary re-chunking
|
| 89 |
if not st.session_state.chunked:
|
|
@@ -99,6 +130,7 @@ if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
|
|
| 99 |
if not st.session_state.vector_created and st.session_state.processed_chunks:
|
| 100 |
with st.spinner("π Initializing Vector Store..."):
|
| 101 |
st.session_state.vector_store = Chroma(
|
|
|
|
| 102 |
collection_name="deepseek_collection",
|
| 103 |
collection_metadata={"hnsw:space": "cosine"},
|
| 104 |
embedding_function=embedding_model
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import os
|
| 3 |
import requests
|
| 4 |
+
import pdfplumber
|
| 5 |
import chromadb
|
| 6 |
from langchain.document_loaders import PDFPlumberLoader
|
| 7 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 8 |
from langchain_experimental.text_splitter import SemanticChunker
|
| 9 |
from langchain_chroma import Chroma
|
| 10 |
+
from langchain.chains import LLMChain
|
| 11 |
from langchain.prompts import PromptTemplate
|
| 12 |
from langchain_groq import ChatGroq
|
| 13 |
+
import re
|
| 14 |
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
|
| 15 |
|
| 16 |
# ----------------- Streamlit UI Setup -----------------
|
|
|
|
| 20 |
# ----------------- API Keys -----------------
|
| 21 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
| 22 |
|
| 23 |
+
# ----------------- ChromaDB Persistent Directory -----------------
|
| 24 |
+
CHROMA_DB_DIR = "/mnt/data/chroma_db" # Hugging Face Spaces persistent storage
|
| 25 |
+
os.makedirs(CHROMA_DB_DIR, exist_ok=True)
|
| 26 |
|
| 27 |
# ----------------- Initialize Session State -----------------
|
| 28 |
if "pdf_loaded" not in st.session_state:
|
|
|
|
| 36 |
if "vector_store" not in st.session_state:
|
| 37 |
st.session_state.vector_store = None
|
| 38 |
|
| 39 |
+
# ----------------- Extract Metadata (Title, Author, Emails, Affiliations) -----------------
|
| 40 |
+
def extract_metadata(pdf_path):
|
| 41 |
+
"""Extract metadata such as Title, Author, Emails, and Affiliations."""
|
| 42 |
+
with pdfplumber.open(pdf_path) as pdf:
|
| 43 |
+
metadata = pdf.metadata or {}
|
| 44 |
|
| 45 |
+
# Extract title
|
| 46 |
+
title = metadata.get("Title", "").strip()
|
| 47 |
+
if not title and pdf.pages:
|
| 48 |
+
text = pdf.pages[0].extract_text()
|
| 49 |
+
title = text.split("\n")[0] if text else "Untitled Document"
|
| 50 |
+
|
| 51 |
+
# Extract author
|
| 52 |
+
author = metadata.get("Author", "").strip()
|
| 53 |
+
if not author and pdf.pages:
|
| 54 |
+
author_matches = re.findall(r"By ([A-Za-z\s,]+)", pdf.pages[0].extract_text() or "")
|
| 55 |
+
author = author_matches[0] if author_matches else "Unknown Author"
|
| 56 |
+
|
| 57 |
+
# Extract emails
|
| 58 |
+
emails = re.findall(r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}", pdf.pages[0].extract_text() or "")
|
| 59 |
+
email_str = ", ".join(emails) if emails else "No emails found"
|
| 60 |
+
|
| 61 |
+
# Extract affiliations
|
| 62 |
+
affiliations = re.findall(r"(?:Department|Faculty|Institute|University|College|School)\s+[\w\s]+", pdf.pages[0].extract_text() or "")
|
| 63 |
+
affiliation_str = ", ".join(affiliations) if affiliations else "No affiliations found"
|
| 64 |
+
|
| 65 |
+
return title, author, email_str, affiliation_str
|
| 66 |
|
| 67 |
# ----------------- PDF Selection -----------------
|
|
|
|
| 68 |
pdf_source = st.radio("Choose a PDF source:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
|
| 69 |
|
| 70 |
if pdf_source == "Upload a PDF file":
|
| 71 |
uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
|
| 72 |
if uploaded_file:
|
| 73 |
+
st.session_state.pdf_path = "/mnt/data/temp.pdf"
|
| 74 |
with open(st.session_state.pdf_path, "wb") as f:
|
| 75 |
f.write(uploaded_file.getbuffer())
|
| 76 |
st.session_state.pdf_loaded = False
|
|
|
|
| 84 |
try:
|
| 85 |
response = requests.get(pdf_url)
|
| 86 |
if response.status_code == 200:
|
| 87 |
+
st.session_state.pdf_path = "/mnt/data/temp.pdf"
|
| 88 |
with open(st.session_state.pdf_path, "wb") as f:
|
| 89 |
f.write(response.content)
|
| 90 |
st.session_state.pdf_loaded = False
|
|
|
|
| 101 |
with st.spinner("π Processing document... Please wait."):
|
| 102 |
loader = PDFPlumberLoader(st.session_state.pdf_path)
|
| 103 |
docs = loader.load()
|
| 104 |
+
|
| 105 |
+
# Extract metadata
|
| 106 |
+
title, author, email_str, affiliation_str = extract_metadata(st.session_state.pdf_path)
|
| 107 |
+
|
| 108 |
+
# Display extracted metadata
|
| 109 |
+
st.subheader("π Extracted Document Metadata")
|
| 110 |
+
st.write(f"**Title:** {title}")
|
| 111 |
+
st.write(f"**Author:** {author}")
|
| 112 |
+
st.write(f"**Emails:** {email_str}")
|
| 113 |
+
st.write(f"**Affiliations:** {affiliation_str}")
|
| 114 |
|
| 115 |
# Embedding Model
|
| 116 |
model_name = "nomic-ai/modernbert-embed-base"
|
| 117 |
+
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
|
| 118 |
|
| 119 |
# Prevent unnecessary re-chunking
|
| 120 |
if not st.session_state.chunked:
|
|
|
|
| 130 |
if not st.session_state.vector_created and st.session_state.processed_chunks:
|
| 131 |
with st.spinner("π Initializing Vector Store..."):
|
| 132 |
st.session_state.vector_store = Chroma(
|
| 133 |
+
persist_directory=CHROMA_DB_DIR, # <-- Ensures persistence
|
| 134 |
collection_name="deepseek_collection",
|
| 135 |
collection_metadata={"hnsw:space": "cosine"},
|
| 136 |
embedding_function=embedding_model
|