Spaces:
Build error
Build error
| import os | |
| import requests | |
| import streamlit as st | |
| from langchain.chains import SequentialChain, LLMChain | |
| from langchain.prompts import PromptTemplate | |
| from langchain_groq import ChatGroq | |
| from langchain.document_loaders import PDFPlumberLoader | |
| from langchain_experimental.text_splitter import SemanticChunker | |
| from langchain_huggingface import HuggingFaceEmbeddings | |
| from langchain_chroma import Chroma | |
| # Set API Keys | |
| os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "") | |
| # Load LLM models | |
| llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b") | |
| rag_llm = ChatGroq(model="mixtral-8x7b-32768") | |
| st.title("β") | |
| # Step 1: Choose PDF Source | |
| #### Initialize pdf_path | |
| pdf_path = None | |
| pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0) | |
| if pdf_source == "Upload a PDF file": | |
| uploaded_file = st.file_uploader("Upload your PDF file", type="pdf") | |
| if uploaded_file: | |
| with open("temp.pdf", "wb") as f: | |
| f.write(uploaded_file.getbuffer()) | |
| pdf_path = "temp.pdf" | |
| elif pdf_source == "Enter a PDF URL": | |
| pdf_url = st.text_input("Enter PDF URL:") | |
| if pdf_url: | |
| with st.spinner("Downloading PDF..."): | |
| try: | |
| response = requests.get(pdf_url) | |
| if response.status_code == 200: | |
| with open("temp.pdf", "wb") as f: | |
| f.write(response.content) | |
| pdf_path = "temp.pdf" | |
| st.success("β PDF Downloaded Successfully!") | |
| else: | |
| st.error("β Failed to download PDF. Check the URL.") | |
| pdf_path = None | |
| except Exception as e: | |
| st.error(f"Error downloading PDF: {e}") | |
| pdf_path = None | |
| else: | |
| pdf_path = None | |
| # Step 2: Process PDF | |
| if pdf_path: | |
| with st.spinner("Loading PDF..."): | |
| loader = PDFPlumberLoader(pdf_path) | |
| docs = loader.load() | |
| st.success(f"β **PDF Loaded!** Total Pages: {len(docs)}") | |
| # Step 3: Chunking | |
| with st.spinner("Chunking the document..."): | |
| model_name = "nomic-ai/modernbert-embed-base" | |
| embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'}) | |
| text_splitter = SemanticChunker(embedding_model) | |
| documents = text_splitter.split_documents(docs) | |
| st.success(f"β **Document Chunked!** Total Chunks: {len(documents)}") | |
| # Step 4: Setup Vectorstore | |
| with st.spinner("Creating vector store..."): | |
| vector_store = Chroma( | |
| collection_name="deepseek_collection", | |
| collection_metadata={"hnsw:space": "cosine"}, | |
| embedding_function=embedding_model | |
| ) | |
| vector_store.add_documents(documents) | |
| st.success("β **Vector Store Created!**") | |
| # Step 5: Query Input | |
| query = st.text_input("π Enter a Query:") | |
| if query: | |
| with st.spinner("Retrieving relevant contexts..."): | |
| retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5}) | |
| contexts = retriever.invoke(query) | |
| context_texts = [doc.page_content for doc in contexts] | |
| st.success(f"β **Retrieved {len(context_texts)} Contexts!**") | |
| for i, text in enumerate(context_texts, 1): | |
| st.write(f"**Context {i}:** {text[:500]}...") | |
| # Step 6: Context Relevancy Checker | |
| with st.spinner("Evaluating context relevancy..."): | |
| relevancy_prompt = PromptTemplate( | |
| input_variables=["retriever_query", "context"], | |
| template="""You are an expert judge. Assign relevancy scores (0 or 1) for each context to answer the query. | |
| CONTEXT LIST: | |
| {context} | |
| QUERY: | |
| {retriever_query} | |
| RESPONSE (JSON): | |
| [{{"content": 1, "score": <0 or 1>, "reasoning": "<explanation>"}}, | |
| {{"content": 2, "score": <0 or 1>, "reasoning": "<explanation>"}}, | |
| ...]""" | |
| ) | |
| context_relevancy_chain = LLMChain(llm=llm_judge, prompt=relevancy_prompt, output_key="relevancy_response") | |
| relevancy_response = context_relevancy_chain.invoke({"context": context_texts, "retriever_query": query}) | |
| st.success("β **Context Relevancy Evaluated!**") | |
| st.json(relevancy_response['relevancy_response']) | |
| # Step 7: Selecting Relevant Contexts | |
| with st.spinner("Selecting the most relevant contexts..."): | |
| relevant_prompt = PromptTemplate( | |
| input_variables=["relevancy_response"], | |
| template="""Extract contexts with score 0 from the relevancy response. | |
| RELEVANCY RESPONSE: | |
| {relevancy_response} | |
| RESPONSE (JSON): | |
| [{{"content": <content number>}}] | |
| """ | |
| ) | |
| pick_relevant_context_chain = LLMChain(llm=llm_judge, prompt=relevant_prompt, output_key="context_number") | |
| relevant_response = pick_relevant_context_chain.invoke({"relevancy_response": relevancy_response['relevancy_response']}) | |
| st.success("β **Relevant Contexts Selected!**") | |
| st.json(relevant_response['context_number']) | |
| # Step 8: Retrieving Context for Response Generation | |
| with st.spinner("Retrieving final context..."): | |
| context_prompt = PromptTemplate( | |
| input_variables=["context_number", "context"], | |
| template="""Extract actual content for the selected context numbers. | |
| CONTEXT NUMBERS: | |
| {context_number} | |
| CONTENT LIST: | |
| {context} | |
| RESPONSE (JSON): | |
| [{{"context_number": <content number>, "relevant_content": "<actual context>"}}] | |
| """ | |
| ) | |
| relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts") | |
| final_contexts = relevant_contexts_chain.invoke({"context_number": relevant_response['context_number'], "context": context_texts}) | |
| st.success("β **Final Contexts Retrieved!**") | |
| st.json(final_contexts['relevant_contexts']) | |
| # Step 9: Generate Final Response | |
| with st.spinner("Generating the final answer..."): | |
| rag_prompt = PromptTemplate( | |
| input_variables=["query", "context"], | |
| template="""Generate a clear, fact-based response based on the context. | |
| QUERY: | |
| {query} | |
| CONTEXT: | |
| {context} | |
| ANSWER: | |
| """ | |
| ) | |
| response_chain = LLMChain(llm=rag_llm, prompt=rag_prompt, output_key="final_response") | |
| final_response = response_chain.invoke({"query": query, "context": final_contexts['relevant_contexts']}) | |
| st.success("β **Final Response Generated!**") | |
| st.success(final_response['final_response']) | |
| # Step 10: Display Workflow Breakdown | |
| st.write("π **Workflow Breakdown:**") | |
| st.json({ | |
| "Context Relevancy Evaluation": relevancy_response["relevancy_response"], | |
| "Relevant Contexts": relevant_response["context_number"], | |
| "Extracted Contexts": final_contexts["relevant_contexts"], | |
| "Final Answer": final_response["final_response"] | |
| }) |