Spaces:
Build error
Build error
| import streamlit as st | |
| import os | |
| import json | |
| import requests | |
| import pdfplumber | |
| import chromadb | |
| import re | |
| from langchain.document_loaders import PDFPlumberLoader | |
| from langchain_huggingface import HuggingFaceEmbeddings | |
| from langchain_experimental.text_splitter import SemanticChunker | |
| from langchain_chroma import Chroma | |
| from langchain.chains import LLMChain | |
| from langchain.prompts import PromptTemplate | |
| from langchain_groq import ChatGroq | |
| from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth | |
| # ----------------- Streamlit UI Setup ----------------- | |
| st.set_page_config(page_title="Blah-1", layout="centered") | |
| # ----------------- API Keys ----------------- | |
| os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "") | |
| # Load LLM models | |
| llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b") | |
| rag_llm = ChatGroq(model="mixtral-8x7b-32768") | |
| llm_judge.verbose = True | |
| rag_llm.verbose = True | |
| # Clear ChromaDB cache to fix tenant issue | |
| chromadb.api.client.SharedSystemClient.clear_system_cache() | |
| st.title("Blah") | |
| # ----------------- ChromaDB Persistent Directory ----------------- | |
| CHROMA_DB_DIR = "/mnt/data/chroma_db" | |
| os.makedirs(CHROMA_DB_DIR, exist_ok=True) | |
| # ----------------- Initialize Session State ----------------- | |
| if "pdf_loaded" not in st.session_state: | |
| st.session_state.pdf_loaded = False | |
| if "chunked" not in st.session_state: | |
| st.session_state.chunked = False | |
| if "vector_created" not in st.session_state: | |
| st.session_state.vector_created = False | |
| if "processed_chunks" not in st.session_state: | |
| st.session_state.processed_chunks = None | |
| if "vector_store" not in st.session_state: | |
| st.session_state.vector_store = None | |
| # ----------------- Metadata Extraction ----------------- | |
| def extract_metadata_llm(pdf_path): | |
| """Extracts metadata using LLM instead of regex.""" | |
| with pdfplumber.open(pdf_path) as pdf: | |
| first_page_text = pdf.pages[0].extract_text() if pdf.pages else "No text found." | |
| # LLM prompt for extracting metadata | |
| metadata_prompt = PromptTemplate( | |
| input_variables=["text"], | |
| template=""" | |
| Given the following first page of a research paper, extract metadata in JSON format with these fields: | |
| { | |
| "Title": "Paper Title", | |
| "Author": "Author Name(s)", | |
| "Emails": "List of Emails", | |
| "Affiliations": "Author Affiliation(s)" | |
| } | |
| Ensure accurate extraction. | |
| First page content: | |
| {text} | |
| """ | |
| ) | |
| metadata_chain = LLMChain(llm=llm_judge, prompt=metadata_prompt, output_key="metadata") | |
| metadata_response = metadata_chain.invoke({"text": first_page_text}) | |
| try: | |
| # Ensure response is a valid JSON string and convert it to a dictionary | |
| metadata_dict = json.loads(metadata_response["metadata"]) | |
| except json.JSONDecodeError: | |
| metadata_dict = { | |
| "Title": "Unknown", | |
| "Author": "Unknown", | |
| "Emails": "No emails found", | |
| "Affiliations": "No affiliations found" | |
| } | |
| return metadata_dict | |
| # ----------------- Step 1: Choose PDF Source ----------------- | |
| pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True) | |
| if pdf_source == "Upload a PDF file": | |
| uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"]) | |
| if uploaded_file: | |
| st.session_state.pdf_path = "/mnt/data/temp.pdf" | |
| with open(st.session_state.pdf_path, "wb") as f: | |
| f.write(uploaded_file.getbuffer()) | |
| st.session_state.pdf_loaded = False | |
| st.session_state.chunked = False | |
| st.session_state.vector_created = False | |
| elif pdf_source == "Enter a PDF URL": | |
| pdf_url = st.text_input("Enter PDF URL:") | |
| if pdf_url and not st.session_state.pdf_loaded: | |
| with st.spinner("π Downloading PDF..."): | |
| try: | |
| response = requests.get(pdf_url) | |
| if response.status_code == 200: | |
| st.session_state.pdf_path = "/mnt/data/temp.pdf" | |
| with open(st.session_state.pdf_path, "wb") as f: | |
| f.write(response.content) | |
| st.session_state.pdf_loaded = False | |
| st.session_state.chunked = False | |
| st.session_state.vector_created = False | |
| st.success("β PDF Downloaded Successfully!") | |
| else: | |
| st.error("β Failed to download PDF. Check the URL.") | |
| except Exception as e: | |
| st.error(f"Error downloading PDF: {e}") | |
| # ----------------- Process PDF ----------------- | |
| if not st.session_state.pdf_loaded and "pdf_path" in st.session_state: | |
| with st.spinner("π Processing document... Please wait."): | |
| loader = PDFPlumberLoader(st.session_state.pdf_path) | |
| docs = loader.load() | |
| st.json(docs[0].metadata) | |
| # Extract metadata | |
| metadata = extract_metadata_llm(st.session_state.pdf_path) | |
| # Display extracted-metadata | |
| st.subheader("π Extracted Document Metadata") | |
| st.subheader("π Extracted Document Metadata") | |
| st.write(f"**Title:** {metadata.get('Title', 'Unknown')}") | |
| st.write(f"**Author:** {metadata.get('Author', 'Unknown')}") | |
| st.write(f"**Emails:** {metadata.get('Emails', 'No emails found')}") | |
| st.write(f"**Affiliations:** {metadata.get('Affiliations', 'No affiliations found')}") | |
| # Embedding Model | |
| model_name = "nomic-ai/modernbert-embed-base" | |
| embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False}) | |
| # Convert metadata into a retrievable chunk | |
| metadata_doc = {"page_content": metadata, "metadata": {"source": "metadata"}} | |
| # Prevent unnecessary re-chunking | |
| if not st.session_state.chunked: | |
| text_splitter = SemanticChunker(embedding_model) | |
| document_chunks = text_splitter.split_documents(docs) | |
| document_chunks.insert(0, metadata_doc) # Insert metadata as a retrievable document | |
| st.session_state.processed_chunks = document_chunks | |
| st.session_state.chunked = True | |
| st.session_state.pdf_loaded = True | |
| st.success("β Document processed and chunked successfully!") | |
| # ----------------- Setup Vector Store ----------------- | |
| if not st.session_state.vector_created and st.session_state.processed_chunks: | |
| with st.spinner("π Initializing Vector Store..."): | |
| st.session_state.vector_store = Chroma( | |
| persist_directory=CHROMA_DB_DIR, # <-- Ensures persistence | |
| collection_name="deepseek_collection", | |
| collection_metadata={"hnsw:space": "cosine"}, | |
| embedding_function=embedding_model | |
| ) | |
| st.session_state.vector_store.add_documents(st.session_state.processed_chunks) | |
| st.session_state.vector_created = True | |
| st.success("β Vector store initialized successfully!") | |
| # ----------------- Query Input ----------------- | |
| query = st.text_input("π Ask a question about the document:") | |
| if query: | |
| with st.spinner("π Retrieving relevant context..."): | |
| retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5}) | |
| retrieved_docs = retriever.invoke(query) | |
| context = [d.page_content for d in retrieved_docs] | |
| st.success("β Context retrieved successfully!") | |
| # ----------------- Run Individual Chains Explicitly ----------------- | |
| context_relevancy_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt), output_key="relevancy_response") | |
| relevant_context_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt), output_key="context_number") | |
| relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["context_number", "context"], template=response_synth), output_key="relevant_contexts") | |
| response_chain = LLMChain(llm=rag_llm, prompt=PromptTemplate(input_variables=["query", "context"], template=rag_prompt), output_key="final_response") | |
| response_crisis = context_relevancy_chain.invoke({"context": context, "retriever_query": query}) | |
| relevant_response = relevant_context_chain.invoke({"relevancy_response": response_crisis["relevancy_response"]}) | |
| contexts = relevant_contexts_chain.invoke({"context_number": relevant_response["context_number"], "context": context}) | |
| final_response = response_chain.invoke({"query": query, "context": contexts["relevant_contexts"]}) | |
| # ----------------- Display All Outputs ----------------- | |
| st.markdown("### Context Relevancy Evaluation") | |
| st.json(response_crisis["relevancy_response"]) | |
| st.markdown("### Picked Relevant Contexts") | |
| st.json(relevant_response["context_number"]) | |
| st.markdown("### Extracted Relevant Contexts") | |
| st.json(contexts["relevant_contexts"]) | |
| st.markdown("### RAG Final Response") | |
| st.write(final_response["final_response"]) | |
| st.subheader("context_relevancy_evaluation_chain Statement") | |
| st.json(final_response["relevancy_response"]) | |
| st.subheader("pick_relevant_context_chain Statement") | |
| st.json(final_response["context_number"]) | |
| st.subheader("relevant_contexts_chain Statement") | |
| st.json(final_response["relevant_contexts"]) | |
| st.subheader("RAG Response Statement") | |
| st.json(final_response["final_response"]) | |