helpful info output
Browse files- configs/llama_65B_alpaca.yml +1 -1
- requirements.txt +1 -2
- scripts/finetune.py +3 -0
configs/llama_65B_alpaca.yml
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
base_model: huggyllama/llama-
|
| 2 |
model_type: LlamaForCausalLM
|
| 3 |
tokenizer_type: LlamaTokenizer
|
| 4 |
load_in_8bit: true
|
|
|
|
| 1 |
+
base_model: huggyllama/llama-65b
|
| 2 |
model_type: LlamaForCausalLM
|
| 3 |
tokenizer_type: LlamaTokenizer
|
| 4 |
load_in_8bit: true
|
requirements.txt
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
-
git+https://github.com/huggingface/transformers.git
|
| 2 |
git+https://github.com/huggingface/peft.git
|
|
|
|
| 3 |
attrdict
|
| 4 |
fire
|
| 5 |
PyYAML==6.0
|
|
@@ -12,4 +12,3 @@ wandb
|
|
| 12 |
flash-attn
|
| 13 |
deepspeed
|
| 14 |
einops
|
| 15 |
-
|
|
|
|
|
|
|
| 1 |
git+https://github.com/huggingface/peft.git
|
| 2 |
+
git+https://github.com/huggingface/transformers.git
|
| 3 |
attrdict
|
| 4 |
fire
|
| 5 |
PyYAML==6.0
|
|
|
|
| 12 |
flash-attn
|
| 13 |
deepspeed
|
| 14 |
einops
|
|
|
scripts/finetune.py
CHANGED
|
@@ -258,7 +258,9 @@ def train(
|
|
| 258 |
datasets = []
|
| 259 |
if not isinstance(cfg.datasets, list) and isinstance(cfg.datasets, str):
|
| 260 |
# assumption that we are loading a previously saved/cached dataset
|
|
|
|
| 261 |
dataset = load_from_disk(cfg.datasets)
|
|
|
|
| 262 |
else:
|
| 263 |
for d in cfg.datasets:
|
| 264 |
ds: IterableDataset = load_dataset(
|
|
@@ -289,6 +291,7 @@ def train(
|
|
| 289 |
dataset = Dataset.from_list(
|
| 290 |
[_ for _ in constant_len_dataset]
|
| 291 |
).train_test_split(test_size=cfg.val_set_size, shuffle=True, seed=42)
|
|
|
|
| 292 |
dataset.save_to_disk("data/last_run")
|
| 293 |
|
| 294 |
train_dataset = dataset["train"]
|
|
|
|
| 258 |
datasets = []
|
| 259 |
if not isinstance(cfg.datasets, list) and isinstance(cfg.datasets, str):
|
| 260 |
# assumption that we are loading a previously saved/cached dataset
|
| 261 |
+
print("Loading prepared dataset from disk...")
|
| 262 |
dataset = load_from_disk(cfg.datasets)
|
| 263 |
+
print("Prepared dataset loaded from disk...")
|
| 264 |
else:
|
| 265 |
for d in cfg.datasets:
|
| 266 |
ds: IterableDataset = load_dataset(
|
|
|
|
| 291 |
dataset = Dataset.from_list(
|
| 292 |
[_ for _ in constant_len_dataset]
|
| 293 |
).train_test_split(test_size=cfg.val_set_size, shuffle=True, seed=42)
|
| 294 |
+
print("Saving prepared dataset to disk...")
|
| 295 |
dataset.save_to_disk("data/last_run")
|
| 296 |
|
| 297 |
train_dataset = dataset["train"]
|