multipack w batch sampler (#795)
Browse files* test batch sampler w varying batch lens
* wip
* multipack batchsampler wip
* wip
* fix for prepare data loader to get correct # of steps based on gpues
* lint and clean up
* calculate len estimate
* fix total num steps calc
* add options for dataloader_num_workers and dataloader_pin_memory
* remove gitbook
* support prefetch_factor for dataloader optimization
* fix the kwarg
- gitbook/README.md +0 -1
- gitbook/SUMMARY.md +0 -4
- gitbook/small-dev-details.md +0 -3
- src/axolotl/core/trainer_builder.py +105 -47
- src/axolotl/utils/collators.py +27 -0
- src/axolotl/utils/data.py +2 -2
- src/axolotl/utils/samplers/__init__.py +4 -0
- src/axolotl/utils/samplers/multipack.py +193 -0
- src/axolotl/utils/trainer.py +34 -37
gitbook/README.md
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
# Page
|
|
|
|
|
|
gitbook/SUMMARY.md
DELETED
|
@@ -1,4 +0,0 @@
|
|
| 1 |
-
# Table of contents
|
| 2 |
-
|
| 3 |
-
* [Page](README.md)
|
| 4 |
-
* [Small dev details](small-dev-details.md)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gitbook/small-dev-details.md
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
# Small dev details
|
| 2 |
-
|
| 3 |
-
/
|
|
|
|
|
|
|
|
|
|
|
|
src/axolotl/core/trainer_builder.py
CHANGED
|
@@ -6,7 +6,6 @@ import abc
|
|
| 6 |
import importlib
|
| 7 |
import logging
|
| 8 |
import math
|
| 9 |
-
import os
|
| 10 |
import sys
|
| 11 |
from abc import abstractmethod
|
| 12 |
from dataclasses import dataclass, field
|
|
@@ -18,9 +17,9 @@ import torch
|
|
| 18 |
import transformers
|
| 19 |
from datasets import Dataset
|
| 20 |
from torch.optim.lr_scheduler import OneCycleLR
|
| 21 |
-
from torch.utils.data import DataLoader,
|
| 22 |
from transformers import EarlyStoppingCallback, Trainer, TrainingArguments
|
| 23 |
-
from transformers.
|
| 24 |
|
| 25 |
from axolotl.monkeypatch.relora import ReLoRACallback, ReLoRAScheduler
|
| 26 |
from axolotl.utils.callbacks import (
|
|
@@ -31,8 +30,9 @@ from axolotl.utils.callbacks import (
|
|
| 31 |
bench_eval_callback_factory,
|
| 32 |
log_prediction_callback_factory,
|
| 33 |
)
|
| 34 |
-
from axolotl.utils.collators import
|
| 35 |
from axolotl.utils.dataloader import MultipackDistributedDataloader
|
|
|
|
| 36 |
from axolotl.utils.schedulers import get_cosine_schedule_with_quadratic_warmup
|
| 37 |
|
| 38 |
try:
|
|
@@ -102,6 +102,10 @@ class AxolotlTrainingArguments(TrainingArguments):
|
|
| 102 |
bench_source_max_len: int = field(
|
| 103 |
default=2048, metadata={"help": "Maximum source sequence length for bench."}
|
| 104 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
|
| 107 |
class AxolotlTrainer(Trainer):
|
|
@@ -145,46 +149,69 @@ class AxolotlTrainer(Trainer):
|
|
| 145 |
return self.lr_scheduler
|
| 146 |
|
| 147 |
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
|
| 148 |
-
if self.args.
|
| 149 |
-
return
|
| 150 |
-
self.train_dataset,
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
)
|
| 155 |
return super()._get_train_sampler()
|
| 156 |
|
| 157 |
def _get_eval_sampler(
|
| 158 |
self, eval_dataset: Dataset
|
| 159 |
) -> Optional[torch.utils.data.Sampler]:
|
| 160 |
-
if
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
| 170 |
)
|
| 171 |
return super()._get_eval_sampler(eval_dataset)
|
| 172 |
|
| 173 |
-
def get_train_dataloader(self) ->
|
| 174 |
if self.args.sample_packing:
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
)
|
| 189 |
return super().get_train_dataloader()
|
| 190 |
|
|
@@ -197,18 +224,29 @@ class AxolotlTrainer(Trainer):
|
|
| 197 |
)
|
| 198 |
|
| 199 |
eval_sampler = self._get_eval_sampler(eval_dataset)
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
)
|
| 213 |
return super().get_eval_dataloader(eval_dataset)
|
| 214 |
|
|
@@ -229,6 +267,8 @@ class AxolotlTrainer(Trainer):
|
|
| 229 |
"num_workers": self.args.dataloader_num_workers,
|
| 230 |
"pin_memory": self.args.dataloader_pin_memory,
|
| 231 |
}
|
|
|
|
|
|
|
| 232 |
|
| 233 |
if not isinstance(bench_dataset, torch.utils.data.IterableDataset):
|
| 234 |
dataloader_params["sampler"] = self._get_bench_sampler(bench_dataset)
|
|
@@ -493,6 +533,19 @@ class HFCausalTrainerBuilder(TrainerBuilderBase):
|
|
| 493 |
"sample_packing_efficiency"
|
| 494 |
] = self.cfg.sample_packing_eff_est
|
| 495 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 496 |
if self.cfg.eval_steps:
|
| 497 |
training_arguments_kwargs["evaluation_strategy"] = "steps"
|
| 498 |
training_arguments_kwargs["eval_steps"] = self.cfg.eval_steps
|
|
@@ -672,7 +725,7 @@ class HFCausalTrainerBuilder(TrainerBuilderBase):
|
|
| 672 |
train_dataset=self.train_dataset,
|
| 673 |
eval_dataset=self.eval_dataset,
|
| 674 |
args=training_args,
|
| 675 |
-
data_collator=
|
| 676 |
self.tokenizer,
|
| 677 |
return_tensors="pt",
|
| 678 |
**data_collator_kwargs,
|
|
@@ -690,4 +743,9 @@ class HFCausalTrainerBuilder(TrainerBuilderBase):
|
|
| 690 |
for callback in self.get_post_trainer_create_callbacks(trainer):
|
| 691 |
trainer.add_callback(callback)
|
| 692 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 693 |
return trainer
|
|
|
|
| 6 |
import importlib
|
| 7 |
import logging
|
| 8 |
import math
|
|
|
|
| 9 |
import sys
|
| 10 |
from abc import abstractmethod
|
| 11 |
from dataclasses import dataclass, field
|
|
|
|
| 17 |
import transformers
|
| 18 |
from datasets import Dataset
|
| 19 |
from torch.optim.lr_scheduler import OneCycleLR
|
| 20 |
+
from torch.utils.data import BatchSampler, DataLoader, RandomSampler, SequentialSampler
|
| 21 |
from transformers import EarlyStoppingCallback, Trainer, TrainingArguments
|
| 22 |
+
from transformers.trainer_utils import seed_worker
|
| 23 |
|
| 24 |
from axolotl.monkeypatch.relora import ReLoRACallback, ReLoRAScheduler
|
| 25 |
from axolotl.utils.callbacks import (
|
|
|
|
| 30 |
bench_eval_callback_factory,
|
| 31 |
log_prediction_callback_factory,
|
| 32 |
)
|
| 33 |
+
from axolotl.utils.collators import BatchSamplerDataCollatorForSeq2Seq
|
| 34 |
from axolotl.utils.dataloader import MultipackDistributedDataloader
|
| 35 |
+
from axolotl.utils.samplers import MultipackBatchSampler
|
| 36 |
from axolotl.utils.schedulers import get_cosine_schedule_with_quadratic_warmup
|
| 37 |
|
| 38 |
try:
|
|
|
|
| 102 |
bench_source_max_len: int = field(
|
| 103 |
default=2048, metadata={"help": "Maximum source sequence length for bench."}
|
| 104 |
)
|
| 105 |
+
dataloader_prefetch_factor: Optional[int] = field(
|
| 106 |
+
default=None,
|
| 107 |
+
metadata={"help": "prefetch_factor argument to the dataloader"},
|
| 108 |
+
)
|
| 109 |
|
| 110 |
|
| 111 |
class AxolotlTrainer(Trainer):
|
|
|
|
| 149 |
return self.lr_scheduler
|
| 150 |
|
| 151 |
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
|
| 152 |
+
if self.args.sample_packing:
|
| 153 |
+
return MultipackBatchSampler(
|
| 154 |
+
RandomSampler(self.train_dataset),
|
| 155 |
+
self.args.train_batch_size,
|
| 156 |
+
drop_last=True,
|
| 157 |
+
batch_max_len=self._train_batch_size * self.args.max_seq_length,
|
| 158 |
+
lengths=(
|
| 159 |
+
self.train_dataset.data.column("position_ids")
|
| 160 |
+
.to_pandas()
|
| 161 |
+
.apply(lambda x: x[-1] + 1)
|
| 162 |
+
.values
|
| 163 |
+
),
|
| 164 |
+
packing_efficiency_estimate=self.args.sample_packing_efficiency,
|
| 165 |
)
|
| 166 |
return super()._get_train_sampler()
|
| 167 |
|
| 168 |
def _get_eval_sampler(
|
| 169 |
self, eval_dataset: Dataset
|
| 170 |
) -> Optional[torch.utils.data.Sampler]:
|
| 171 |
+
if self.args.sample_packing and self.args.eval_sample_packing is not False:
|
| 172 |
+
return MultipackBatchSampler(
|
| 173 |
+
SequentialSampler(eval_dataset),
|
| 174 |
+
self.args.per_device_eval_batch_size,
|
| 175 |
+
drop_last=True,
|
| 176 |
+
batch_max_len=self.args.eval_batch_size * self.args.max_seq_length,
|
| 177 |
+
lengths=(
|
| 178 |
+
eval_dataset.data.column("position_ids")
|
| 179 |
+
.to_pandas()
|
| 180 |
+
.apply(lambda x: x[-1] + 1)
|
| 181 |
+
.values
|
| 182 |
+
),
|
| 183 |
+
packing_efficiency_estimate=self.args.sample_packing_efficiency,
|
| 184 |
)
|
| 185 |
return super()._get_eval_sampler(eval_dataset)
|
| 186 |
|
| 187 |
+
def get_train_dataloader(self) -> DataLoader:
|
| 188 |
if self.args.sample_packing:
|
| 189 |
+
train_dataset = self.train_dataset
|
| 190 |
+
train_dataset = train_dataset.remove_columns(["length"])
|
| 191 |
+
data_collator = self.data_collator
|
| 192 |
+
dataloader_params = {
|
| 193 |
+
"batch_size": self._train_batch_size,
|
| 194 |
+
"collate_fn": data_collator,
|
| 195 |
+
"num_workers": self.args.dataloader_num_workers,
|
| 196 |
+
"pin_memory": self.args.dataloader_pin_memory,
|
| 197 |
+
}
|
| 198 |
+
if self.args.dataloader_prefetch_factor:
|
| 199 |
+
dataloader_params[
|
| 200 |
+
"prefetch_factor"
|
| 201 |
+
] = self.args.dataloader_prefetch_factor
|
| 202 |
+
|
| 203 |
+
sampler = self._get_train_sampler()
|
| 204 |
+
if isinstance(sampler, BatchSampler):
|
| 205 |
+
dataloader_params["batch_sampler"] = sampler
|
| 206 |
+
del dataloader_params["batch_size"]
|
| 207 |
+
else:
|
| 208 |
+
dataloader_params["sampler"] = sampler
|
| 209 |
+
dataloader_params["drop_last"] = self.args.dataloader_drop_last
|
| 210 |
+
dataloader_params["worker_init_fn"] = seed_worker
|
| 211 |
+
|
| 212 |
+
self.accelerator.even_batches = False
|
| 213 |
+
return self.accelerator.prepare_data_loader(
|
| 214 |
+
DataLoader(train_dataset, **dataloader_params)
|
| 215 |
)
|
| 216 |
return super().get_train_dataloader()
|
| 217 |
|
|
|
|
| 224 |
)
|
| 225 |
|
| 226 |
eval_sampler = self._get_eval_sampler(eval_dataset)
|
| 227 |
+
eval_dataset = eval_dataset.remove_columns(["length"])
|
| 228 |
+
data_collator = self.data_collator
|
| 229 |
+
dataloader_params = {
|
| 230 |
+
"batch_size": self.args.eval_batch_size,
|
| 231 |
+
"collate_fn": data_collator,
|
| 232 |
+
"num_workers": self.args.dataloader_num_workers,
|
| 233 |
+
"pin_memory": self.args.dataloader_pin_memory,
|
| 234 |
+
}
|
| 235 |
+
if self.args.dataloader_prefetch_factor:
|
| 236 |
+
dataloader_params[
|
| 237 |
+
"prefetch_factor"
|
| 238 |
+
] = self.args.dataloader_prefetch_factor
|
| 239 |
+
|
| 240 |
+
if isinstance(eval_sampler, BatchSampler):
|
| 241 |
+
dataloader_params["batch_sampler"] = eval_sampler
|
| 242 |
+
del dataloader_params["batch_size"]
|
| 243 |
+
else:
|
| 244 |
+
dataloader_params["sampler"] = eval_sampler
|
| 245 |
+
dataloader_params["drop_last"] = self.args.dataloader_drop_last
|
| 246 |
+
|
| 247 |
+
self.accelerator.even_batches = False
|
| 248 |
+
return self.accelerator.prepare_data_loader(
|
| 249 |
+
DataLoader(eval_dataset, **dataloader_params)
|
| 250 |
)
|
| 251 |
return super().get_eval_dataloader(eval_dataset)
|
| 252 |
|
|
|
|
| 267 |
"num_workers": self.args.dataloader_num_workers,
|
| 268 |
"pin_memory": self.args.dataloader_pin_memory,
|
| 269 |
}
|
| 270 |
+
if self.args.dataloader_prefetch_factor:
|
| 271 |
+
dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor
|
| 272 |
|
| 273 |
if not isinstance(bench_dataset, torch.utils.data.IterableDataset):
|
| 274 |
dataloader_params["sampler"] = self._get_bench_sampler(bench_dataset)
|
|
|
|
| 533 |
"sample_packing_efficiency"
|
| 534 |
] = self.cfg.sample_packing_eff_est
|
| 535 |
|
| 536 |
+
if self.cfg.dataloader_pin_memory is not None:
|
| 537 |
+
training_arguments_kwargs[
|
| 538 |
+
"dataloader_pin_memory"
|
| 539 |
+
] = self.cfg.dataloader_pin_memory
|
| 540 |
+
if self.cfg.dataloader_num_workers is not None:
|
| 541 |
+
training_arguments_kwargs[
|
| 542 |
+
"dataloader_num_workers"
|
| 543 |
+
] = self.cfg.dataloader_num_workers
|
| 544 |
+
if self.cfg.dataloader_prefetch_factor is not None:
|
| 545 |
+
training_arguments_kwargs[
|
| 546 |
+
"dataloader_prefetch_factor"
|
| 547 |
+
] = self.cfg.dataloader_prefetch_factor
|
| 548 |
+
|
| 549 |
if self.cfg.eval_steps:
|
| 550 |
training_arguments_kwargs["evaluation_strategy"] = "steps"
|
| 551 |
training_arguments_kwargs["eval_steps"] = self.cfg.eval_steps
|
|
|
|
| 725 |
train_dataset=self.train_dataset,
|
| 726 |
eval_dataset=self.eval_dataset,
|
| 727 |
args=training_args,
|
| 728 |
+
data_collator=BatchSamplerDataCollatorForSeq2Seq(
|
| 729 |
self.tokenizer,
|
| 730 |
return_tensors="pt",
|
| 731 |
**data_collator_kwargs,
|
|
|
|
| 743 |
for callback in self.get_post_trainer_create_callbacks(trainer):
|
| 744 |
trainer.add_callback(callback)
|
| 745 |
|
| 746 |
+
if self.cfg.deepspeed and self.cfg.sample_packing:
|
| 747 |
+
trainer.accelerator.state.deepspeed_plugin.deepspeed_config[
|
| 748 |
+
"train_micro_batch_size_per_gpu"
|
| 749 |
+
] = self.cfg.micro_batch_size
|
| 750 |
+
|
| 751 |
return trainer
|
src/axolotl/utils/collators.py
CHANGED
|
@@ -119,3 +119,30 @@ class DataCollatorForSeq2Seq:
|
|
| 119 |
features["decoder_input_ids"] = decoder_input_ids
|
| 120 |
|
| 121 |
return features
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
features["decoder_input_ids"] = decoder_input_ids
|
| 120 |
|
| 121 |
return features
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
@dataclass
|
| 125 |
+
class BatchSamplerDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
|
| 126 |
+
"""
|
| 127 |
+
Collator for multipack specific to the using the BatchSampler
|
| 128 |
+
"""
|
| 129 |
+
|
| 130 |
+
def __call__(self, features, return_tensors=None):
|
| 131 |
+
chunked_data = {}
|
| 132 |
+
for feature in features[0].keys():
|
| 133 |
+
if feature == "length":
|
| 134 |
+
continue
|
| 135 |
+
if feature == "attention_mask":
|
| 136 |
+
arrays = [
|
| 137 |
+
(1) * np.array(item[feature])
|
| 138 |
+
for item in features
|
| 139 |
+
if feature in item
|
| 140 |
+
]
|
| 141 |
+
chunked_data[feature] = np.concatenate(arrays)
|
| 142 |
+
else:
|
| 143 |
+
arrays = [
|
| 144 |
+
np.array(item[feature]) for item in features if feature in item
|
| 145 |
+
]
|
| 146 |
+
chunked_data[feature] = np.concatenate(arrays)
|
| 147 |
+
features = [chunked_data]
|
| 148 |
+
return super().__call__(features, return_tensors=return_tensors)
|
src/axolotl/utils/data.py
CHANGED
|
@@ -80,11 +80,11 @@ def prepare_dataset(cfg, tokenizer):
|
|
| 80 |
)
|
| 81 |
if cfg.max_steps:
|
| 82 |
total_num_steps = min(
|
| 83 |
-
calculate_total_num_steps(cfg, train_dataset
|
| 84 |
)
|
| 85 |
LOG.info(f"Maximum number of steps set at {total_num_steps}")
|
| 86 |
else:
|
| 87 |
-
total_num_steps = calculate_total_num_steps(cfg, train_dataset
|
| 88 |
return train_dataset, eval_dataset, total_num_steps, prompters
|
| 89 |
|
| 90 |
|
|
|
|
| 80 |
)
|
| 81 |
if cfg.max_steps:
|
| 82 |
total_num_steps = min(
|
| 83 |
+
calculate_total_num_steps(cfg, train_dataset), cfg.max_steps
|
| 84 |
)
|
| 85 |
LOG.info(f"Maximum number of steps set at {total_num_steps}")
|
| 86 |
else:
|
| 87 |
+
total_num_steps = calculate_total_num_steps(cfg, train_dataset)
|
| 88 |
return train_dataset, eval_dataset, total_num_steps, prompters
|
| 89 |
|
| 90 |
|
src/axolotl/utils/samplers/__init__.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
axolotl samplers module
|
| 3 |
+
"""
|
| 4 |
+
from .multipack import MultipackBatchSampler # noqa: F401
|
src/axolotl/utils/samplers/multipack.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pylint: skip-file
|
| 2 |
+
"""
|
| 3 |
+
Multipack Batch Sampler
|
| 4 |
+
"""
|
| 5 |
+
import logging
|
| 6 |
+
import math
|
| 7 |
+
import os
|
| 8 |
+
from typing import Any, Iterable, List, Union
|
| 9 |
+
|
| 10 |
+
import numba
|
| 11 |
+
import numpy as np
|
| 12 |
+
from torch.utils.data import BatchSampler, Sampler
|
| 13 |
+
|
| 14 |
+
LOG = logging.getLogger("axolotl.utils.samplers.multipack")
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
@numba.njit
|
| 18 |
+
def ffd_check(a: np.ndarray, c: int, n: int):
|
| 19 |
+
# First-fit-decreasing bin packing
|
| 20 |
+
# Check if a[] could fit in n bins with capacity c
|
| 21 |
+
# https://en.wikipedia.org/wiki/First-fit-decreasing_bin_packing
|
| 22 |
+
|
| 23 |
+
a = np.sort(a)[::-1]
|
| 24 |
+
bins = np.full((n,), c, dtype=a.dtype)
|
| 25 |
+
for size in a:
|
| 26 |
+
not_found = True
|
| 27 |
+
for idx in range(n):
|
| 28 |
+
if bins[idx] >= size:
|
| 29 |
+
bins[idx] -= size
|
| 30 |
+
not_found = False
|
| 31 |
+
break
|
| 32 |
+
|
| 33 |
+
if not_found:
|
| 34 |
+
return False
|
| 35 |
+
|
| 36 |
+
return True
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@numba.njit
|
| 40 |
+
def ffd_with_result(a: np.ndarray, c: int, start_index: int):
|
| 41 |
+
# First-fit-decreasing bin packing (with result return)
|
| 42 |
+
|
| 43 |
+
indices = np.argsort(a)[::-1]
|
| 44 |
+
a = a[indices]
|
| 45 |
+
|
| 46 |
+
bins: List[Any] = []
|
| 47 |
+
bins_result: List[Any] = []
|
| 48 |
+
for a_id, size in enumerate(a):
|
| 49 |
+
add_new = True
|
| 50 |
+
for idx in range(len(bins)):
|
| 51 |
+
if bins[idx] >= size:
|
| 52 |
+
bins[idx] -= size
|
| 53 |
+
bins_result[idx].append(indices[a_id] + start_index)
|
| 54 |
+
add_new = False
|
| 55 |
+
break
|
| 56 |
+
|
| 57 |
+
if add_new:
|
| 58 |
+
bins.append(c - size)
|
| 59 |
+
bins_result.append([indices[a_id] + start_index])
|
| 60 |
+
|
| 61 |
+
return bins_result
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
@numba.njit
|
| 65 |
+
def allocate(
|
| 66 |
+
lengths: np.ndarray, lengths_cumsum: np.ndarray, rank: int, c: int, n: int
|
| 67 |
+
):
|
| 68 |
+
# Dynamic batch allocator, similar to Multifit
|
| 69 |
+
# https://en.wikipedia.org/wiki/Multifit_algorithm
|
| 70 |
+
# ~99.5% efficiency on OpenChat training set (12 * 2048 ctx len)
|
| 71 |
+
|
| 72 |
+
s = 0
|
| 73 |
+
start_index = 0
|
| 74 |
+
result = []
|
| 75 |
+
|
| 76 |
+
while True:
|
| 77 |
+
# binary search [l, r)
|
| 78 |
+
left = 1
|
| 79 |
+
right = 1 + np.searchsorted(lengths_cumsum[start_index:], s + c * n, "right")
|
| 80 |
+
|
| 81 |
+
while right - left > 1:
|
| 82 |
+
mid = (left + right) // 2
|
| 83 |
+
if ffd_check(lengths[start_index : start_index + mid], c, n):
|
| 84 |
+
left = mid
|
| 85 |
+
else:
|
| 86 |
+
right = mid
|
| 87 |
+
|
| 88 |
+
# use length l
|
| 89 |
+
batch = ffd_with_result(
|
| 90 |
+
lengths[start_index : start_index + left], c, start_index
|
| 91 |
+
)
|
| 92 |
+
assert len(batch) <= n
|
| 93 |
+
if len(batch) < n:
|
| 94 |
+
break
|
| 95 |
+
|
| 96 |
+
start_index += left
|
| 97 |
+
s = lengths_cumsum[start_index - 1]
|
| 98 |
+
|
| 99 |
+
# add local rank
|
| 100 |
+
result.append(batch[rank])
|
| 101 |
+
|
| 102 |
+
return result, s, len(result) * c * n
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
class MultipackBatchSampler(BatchSampler):
|
| 106 |
+
"""
|
| 107 |
+
Batch Sampler class for multipack
|
| 108 |
+
"""
|
| 109 |
+
|
| 110 |
+
def __init__(
|
| 111 |
+
self,
|
| 112 |
+
sampler: Union[Sampler[int], Iterable[int]],
|
| 113 |
+
batch_size: int,
|
| 114 |
+
drop_last: bool,
|
| 115 |
+
batch_max_len: int,
|
| 116 |
+
lengths: np.ndarray,
|
| 117 |
+
packing_efficiency_estimate: float = 1.0,
|
| 118 |
+
):
|
| 119 |
+
super().__init__(sampler, batch_size, drop_last)
|
| 120 |
+
self.batch_size = None
|
| 121 |
+
self.batch_max_len = batch_max_len
|
| 122 |
+
self.lengths: np.ndarray = lengths
|
| 123 |
+
self.packing_efficiency_estimate = packing_efficiency_estimate or 1.0
|
| 124 |
+
|
| 125 |
+
assert isinstance(self.lengths, np.ndarray)
|
| 126 |
+
|
| 127 |
+
self.epoch = 0
|
| 128 |
+
|
| 129 |
+
# statistics
|
| 130 |
+
self.eff_total_used = 0
|
| 131 |
+
self.eff_total_slots = 0
|
| 132 |
+
|
| 133 |
+
def set_epoch(self, epoch: int):
|
| 134 |
+
self.epoch = epoch
|
| 135 |
+
|
| 136 |
+
def generate_batches(self, set_stats=False):
|
| 137 |
+
indices = [idx for idx in self.sampler]
|
| 138 |
+
|
| 139 |
+
lengths = self.lengths[indices]
|
| 140 |
+
lengths_cumsum = np.cumsum(lengths)
|
| 141 |
+
|
| 142 |
+
batches, total_used, total_slots = allocate(
|
| 143 |
+
lengths=lengths,
|
| 144 |
+
lengths_cumsum=lengths_cumsum,
|
| 145 |
+
rank=0,
|
| 146 |
+
c=self.batch_max_len,
|
| 147 |
+
n=1,
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
batches = [[indices[b_idx] for b_idx in batch] for batch in batches]
|
| 151 |
+
|
| 152 |
+
# statistics
|
| 153 |
+
if set_stats:
|
| 154 |
+
self.eff_total_used += total_used
|
| 155 |
+
self.eff_total_slots += total_slots
|
| 156 |
+
|
| 157 |
+
return batches
|
| 158 |
+
|
| 159 |
+
def __iter__(self):
|
| 160 |
+
batches = self.generate_batches(set_stats=True)
|
| 161 |
+
return iter(batches)
|
| 162 |
+
|
| 163 |
+
def num_batches(self):
|
| 164 |
+
batches = self.generate_batches(set_stats=True)
|
| 165 |
+
return len(batches)
|
| 166 |
+
|
| 167 |
+
def efficiency(self):
|
| 168 |
+
return self.eff_total_used / self.eff_total_slots
|
| 169 |
+
|
| 170 |
+
def __len__(self):
|
| 171 |
+
self.num_batches()
|
| 172 |
+
return self._len_est()
|
| 173 |
+
|
| 174 |
+
def _len_est(self):
|
| 175 |
+
world_size = int(os.getenv("WORLD_SIZE", "1"))
|
| 176 |
+
lengths_sum = np.sum(self.lengths)
|
| 177 |
+
lengths_sum_per_device = lengths_sum // world_size
|
| 178 |
+
LOG.info(
|
| 179 |
+
f"packing_efficiency_estimate: {self.packing_efficiency_estimate} "
|
| 180 |
+
f"total_num_tokens per device: {lengths_sum_per_device}"
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
# shave off 1% + 1 for dealing with variance in packing from random sampler to sampler
|
| 184 |
+
return (
|
| 185 |
+
world_size
|
| 186 |
+
* math.floor(
|
| 187 |
+
0.99
|
| 188 |
+
* lengths_sum_per_device
|
| 189 |
+
/ self.packing_efficiency_estimate
|
| 190 |
+
// self.batch_max_len
|
| 191 |
+
)
|
| 192 |
+
- 1
|
| 193 |
+
)
|
src/axolotl/utils/trainer.py
CHANGED
|
@@ -8,20 +8,13 @@ from typing import List
|
|
| 8 |
import numpy as np
|
| 9 |
import torch
|
| 10 |
import torch.cuda
|
| 11 |
-
import torch.distributed as dist
|
| 12 |
from accelerate.logging import get_logger
|
| 13 |
from datasets import set_caching_enabled
|
| 14 |
-
from torch.utils.data import
|
| 15 |
|
| 16 |
from axolotl.core.trainer_builder import HFCausalTrainerBuilder
|
| 17 |
-
from axolotl.utils.
|
| 18 |
-
from axolotl.utils.
|
| 19 |
-
from axolotl.utils.distributed import (
|
| 20 |
-
is_distributed,
|
| 21 |
-
is_main_process,
|
| 22 |
-
reduce_and_broadcast,
|
| 23 |
-
zero_first,
|
| 24 |
-
)
|
| 25 |
|
| 26 |
LOG = get_logger("axolotl")
|
| 27 |
|
|
@@ -148,7 +141,7 @@ def process_datasets_for_packing(cfg, train_dataset, eval_dataset, tokenizer):
|
|
| 148 |
return train_dataset, eval_dataset
|
| 149 |
|
| 150 |
|
| 151 |
-
def calculate_total_num_steps(cfg, train_dataset
|
| 152 |
if cfg.sample_packing:
|
| 153 |
# we have to drop anything longer then sequence len otherwise
|
| 154 |
# flash attention with position ids fails
|
|
@@ -196,37 +189,36 @@ def calculate_total_num_steps(cfg, train_dataset, tokenizer):
|
|
| 196 |
main_process_only=True,
|
| 197 |
)
|
| 198 |
else:
|
| 199 |
-
|
| 200 |
-
sampler
|
| 201 |
-
train_dataset,
|
| 202 |
-
num_replicas=cfg.world_size,
|
| 203 |
-
rank=dist.get_rank(),
|
| 204 |
-
seed=cfg.seed or 42,
|
| 205 |
-
)
|
| 206 |
-
else:
|
| 207 |
-
sampler = RandomSampler(train_dataset)
|
| 208 |
-
|
| 209 |
-
data_loader = MultipackDistributedDataloader(
|
| 210 |
-
train_dataset,
|
| 211 |
batch_size=cfg.micro_batch_size,
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
|
|
|
|
|
|
|
|
|
| 217 |
),
|
| 218 |
-
sampler=sampler,
|
| 219 |
-
packing_efficiency_estimate=cfg.sample_packing_eff_est,
|
| 220 |
-
sample_packing_seq_len_multiplier=cfg.micro_batch_size,
|
| 221 |
-
device_count=int(os.environ.get("WORLD_SIZE", 1)),
|
| 222 |
-
num_epochs=cfg.num_epochs,
|
| 223 |
)
|
| 224 |
-
|
| 225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
LOG.debug(f"data_loader_len: {data_loader_len}", main_process_only=True)
|
| 227 |
# FIXME: is there a bug here somewhere? the total num steps depends
|
| 228 |
# on the agreed on value for sample_packing_eff_est
|
| 229 |
-
total_num_steps = int(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
|
| 231 |
def calc_sample_packing_eff_est(estimates: List[float]):
|
| 232 |
LOG.info(f"sample_packing_eff_est across ranks: {repr(estimates)}")
|
|
@@ -246,7 +238,12 @@ def calculate_total_num_steps(cfg, train_dataset, tokenizer):
|
|
| 246 |
)
|
| 247 |
else:
|
| 248 |
total_num_steps = int(
|
| 249 |
-
math.ceil(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
)
|
| 251 |
LOG.debug(f"total_num_steps: {total_num_steps}", main_process_only=True)
|
| 252 |
return total_num_steps
|
|
|
|
| 8 |
import numpy as np
|
| 9 |
import torch
|
| 10 |
import torch.cuda
|
|
|
|
| 11 |
from accelerate.logging import get_logger
|
| 12 |
from datasets import set_caching_enabled
|
| 13 |
+
from torch.utils.data import DataLoader, RandomSampler
|
| 14 |
|
| 15 |
from axolotl.core.trainer_builder import HFCausalTrainerBuilder
|
| 16 |
+
from axolotl.utils.distributed import is_main_process, reduce_and_broadcast, zero_first
|
| 17 |
+
from axolotl.utils.samplers import MultipackBatchSampler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
LOG = get_logger("axolotl")
|
| 20 |
|
|
|
|
| 141 |
return train_dataset, eval_dataset
|
| 142 |
|
| 143 |
|
| 144 |
+
def calculate_total_num_steps(cfg, train_dataset):
|
| 145 |
if cfg.sample_packing:
|
| 146 |
# we have to drop anything longer then sequence len otherwise
|
| 147 |
# flash attention with position ids fails
|
|
|
|
| 189 |
main_process_only=True,
|
| 190 |
)
|
| 191 |
else:
|
| 192 |
+
sampler = MultipackBatchSampler(
|
| 193 |
+
sampler=RandomSampler(train_dataset),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
batch_size=cfg.micro_batch_size,
|
| 195 |
+
drop_last=True,
|
| 196 |
+
batch_max_len=cfg.micro_batch_size
|
| 197 |
+
* (cfg.max_packed_sequence_len or cfg.sequence_len),
|
| 198 |
+
lengths=(
|
| 199 |
+
train_dataset.data.column("position_ids")
|
| 200 |
+
.to_pandas()
|
| 201 |
+
.apply(lambda x: x[-1] + 1)
|
| 202 |
+
.values
|
| 203 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
)
|
| 205 |
+
|
| 206 |
+
data_loader = DataLoader(
|
| 207 |
+
train_dataset.remove_columns(["length"]),
|
| 208 |
+
batch_sampler=sampler,
|
| 209 |
+
)
|
| 210 |
+
data_loader_len = len(data_loader)
|
| 211 |
+
actual_eff = sampler.efficiency()
|
| 212 |
LOG.debug(f"data_loader_len: {data_loader_len}", main_process_only=True)
|
| 213 |
# FIXME: is there a bug here somewhere? the total num steps depends
|
| 214 |
# on the agreed on value for sample_packing_eff_est
|
| 215 |
+
total_num_steps = int(
|
| 216 |
+
math.floor(
|
| 217 |
+
data_loader_len
|
| 218 |
+
* cfg.num_epochs
|
| 219 |
+
/ int(os.environ.get("WORLD_SIZE", 1))
|
| 220 |
+
)
|
| 221 |
+
)
|
| 222 |
|
| 223 |
def calc_sample_packing_eff_est(estimates: List[float]):
|
| 224 |
LOG.info(f"sample_packing_eff_est across ranks: {repr(estimates)}")
|
|
|
|
| 238 |
)
|
| 239 |
else:
|
| 240 |
total_num_steps = int(
|
| 241 |
+
math.ceil(
|
| 242 |
+
len(train_dataset)
|
| 243 |
+
* cfg.num_epochs
|
| 244 |
+
/ int(os.environ.get("WORLD_SIZE", 1))
|
| 245 |
+
/ cfg.batch_size
|
| 246 |
+
)
|
| 247 |
)
|
| 248 |
LOG.debug(f"total_num_steps: {total_num_steps}", main_process_only=True)
|
| 249 |
return total_num_steps
|