Merge branch 'main' into patch-4
Browse files- README.md +1 -1
- deepspeed/zero2.json +46 -0
- examples/code-llama/13b/lora.yml +67 -0
- examples/code-llama/13b/qlora.yml +69 -0
- examples/code-llama/34b/lora.yml +67 -0
- examples/code-llama/34b/qlora.yml +69 -0
- examples/code-llama/7b/lora.yml +67 -0
- examples/code-llama/7b/qlora.yml +69 -0
- examples/code-llama/README.md +22 -0
- examples/llama-2/relora.yml +73 -0
- scripts/finetune.py +2 -0
- src/axolotl/utils/trainer.py +2 -71
README.md
CHANGED
|
@@ -521,7 +521,7 @@ lr_quadratic_warmup:
|
|
| 521 |
logging_steps:
|
| 522 |
save_strategy: # set to `no` to skip checkpoint saves
|
| 523 |
save_steps: # leave empty to save at each epoch
|
| 524 |
-
eval_steps:
|
| 525 |
save_total_limit: # checkpoints saved at a time
|
| 526 |
max_steps:
|
| 527 |
|
|
|
|
| 521 |
logging_steps:
|
| 522 |
save_strategy: # set to `no` to skip checkpoint saves
|
| 523 |
save_steps: # leave empty to save at each epoch
|
| 524 |
+
eval_steps: # leave empty to eval at each epoch
|
| 525 |
save_total_limit: # checkpoints saved at a time
|
| 526 |
max_steps:
|
| 527 |
|
deepspeed/zero2.json
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"zero_optimization": {
|
| 3 |
+
"stage": 2,
|
| 4 |
+
"offload_optimizer": {
|
| 5 |
+
"device": "cpu"
|
| 6 |
+
},
|
| 7 |
+
"contiguous_gradients": true,
|
| 8 |
+
"overlap_comm": true
|
| 9 |
+
},
|
| 10 |
+
"bf16": {
|
| 11 |
+
"enabled": "auto"
|
| 12 |
+
},
|
| 13 |
+
"fp16": {
|
| 14 |
+
"enabled": "auto",
|
| 15 |
+
"auto_cast": false,
|
| 16 |
+
"loss_scale": 0,
|
| 17 |
+
"initial_scale_power": 32,
|
| 18 |
+
"loss_scale_window": 1000,
|
| 19 |
+
"hysteresis": 2,
|
| 20 |
+
"min_loss_scale": 1
|
| 21 |
+
},
|
| 22 |
+
"optimizer": {
|
| 23 |
+
"type": "AdamW",
|
| 24 |
+
"params": {
|
| 25 |
+
"lr": "auto",
|
| 26 |
+
"betas": [
|
| 27 |
+
0.9,
|
| 28 |
+
0.999
|
| 29 |
+
],
|
| 30 |
+
"eps": 1e-8,
|
| 31 |
+
"weight_decay": "auto"
|
| 32 |
+
}
|
| 33 |
+
},
|
| 34 |
+
"scheduler": {
|
| 35 |
+
"type": "WarmupDecayLR",
|
| 36 |
+
"params": {
|
| 37 |
+
"warmup_min_lr": "auto",
|
| 38 |
+
"warmup_max_lr": "auto",
|
| 39 |
+
"warmup_num_steps": "auto",
|
| 40 |
+
"total_num_steps": "auto"
|
| 41 |
+
}
|
| 42 |
+
},
|
| 43 |
+
"train_batch_size": "auto",
|
| 44 |
+
"train_micro_batch_size_per_gpu": "auto",
|
| 45 |
+
"wall_clock_breakdown": false
|
| 46 |
+
}
|
examples/code-llama/13b/lora.yml
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
base_model: codellama/CodeLlama-13b-hf
|
| 2 |
+
base_model_config: codellama/CodeLlama-13b-hf
|
| 3 |
+
model_type: LlamaForCausalLM
|
| 4 |
+
tokenizer_type: CodeLlamaTokenizer
|
| 5 |
+
is_llama_derived_model: true
|
| 6 |
+
|
| 7 |
+
load_in_8bit: true
|
| 8 |
+
load_in_4bit: false
|
| 9 |
+
strict: false
|
| 10 |
+
|
| 11 |
+
datasets:
|
| 12 |
+
- path: mhenrichsen/alpaca_2k_test
|
| 13 |
+
type: alpaca
|
| 14 |
+
dataset_prepared_path: last_run_prepared
|
| 15 |
+
val_set_size: 0.01
|
| 16 |
+
output_dir: ./lora-out
|
| 17 |
+
|
| 18 |
+
sequence_len: 100000
|
| 19 |
+
sample_packing: true
|
| 20 |
+
|
| 21 |
+
adapter: lora
|
| 22 |
+
lora_model_dir:
|
| 23 |
+
lora_r: 32
|
| 24 |
+
lora_alpha: 16
|
| 25 |
+
lora_dropout: 0.05
|
| 26 |
+
lora_target_linear: true
|
| 27 |
+
lora_fan_in_fan_out:
|
| 28 |
+
|
| 29 |
+
wandb_project:
|
| 30 |
+
wandb_entity:
|
| 31 |
+
wandb_watch:
|
| 32 |
+
wandb_run_id:
|
| 33 |
+
wandb_log_model:
|
| 34 |
+
|
| 35 |
+
gradient_accumulation_steps: 4
|
| 36 |
+
micro_batch_size: 2
|
| 37 |
+
num_epochs: 3
|
| 38 |
+
optimizer: adamw_bnb_8bit
|
| 39 |
+
lr_scheduler: cosine
|
| 40 |
+
learning_rate: 0.0002
|
| 41 |
+
|
| 42 |
+
train_on_inputs: false
|
| 43 |
+
group_by_length: false
|
| 44 |
+
bf16: true
|
| 45 |
+
fp16: false
|
| 46 |
+
tf32: false
|
| 47 |
+
|
| 48 |
+
gradient_checkpointing: true
|
| 49 |
+
early_stopping_patience:
|
| 50 |
+
resume_from_checkpoint:
|
| 51 |
+
local_rank:
|
| 52 |
+
logging_steps: 1
|
| 53 |
+
xformers_attention:
|
| 54 |
+
flash_attention: true
|
| 55 |
+
|
| 56 |
+
warmup_steps: 10
|
| 57 |
+
eval_steps: 20
|
| 58 |
+
save_steps:
|
| 59 |
+
debug:
|
| 60 |
+
deepspeed:
|
| 61 |
+
weight_decay: 0.0
|
| 62 |
+
fsdp:
|
| 63 |
+
fsdp_config:
|
| 64 |
+
special_tokens:
|
| 65 |
+
bos_token: "<s>"
|
| 66 |
+
eos_token: "</s>"
|
| 67 |
+
unk_token: "<unk>"
|
examples/code-llama/13b/qlora.yml
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
base_model: codellama/CodeLlama-13b-hf
|
| 2 |
+
base_model_config: codellama/CodeLlama-13b-hf
|
| 3 |
+
model_type: LlamaForCausalLM
|
| 4 |
+
tokenizer_type: CodeLlamaTokenizer
|
| 5 |
+
is_llama_derived_model: true
|
| 6 |
+
|
| 7 |
+
load_in_8bit: false
|
| 8 |
+
load_in_4bit: true
|
| 9 |
+
strict: false
|
| 10 |
+
|
| 11 |
+
datasets:
|
| 12 |
+
- path: mhenrichsen/alpaca_2k_test
|
| 13 |
+
type: alpaca
|
| 14 |
+
dataset_prepared_path: last_run_prepared
|
| 15 |
+
val_set_size: 0.01
|
| 16 |
+
output_dir: ./qlora-out
|
| 17 |
+
|
| 18 |
+
adapter: qlora
|
| 19 |
+
lora_model_dir:
|
| 20 |
+
|
| 21 |
+
sequence_len: 100000
|
| 22 |
+
sample_packing: true
|
| 23 |
+
|
| 24 |
+
lora_r: 32
|
| 25 |
+
lora_alpha: 16
|
| 26 |
+
lora_dropout: 0.05
|
| 27 |
+
lora_target_modules:
|
| 28 |
+
lora_target_linear: true
|
| 29 |
+
lora_fan_in_fan_out:
|
| 30 |
+
|
| 31 |
+
wandb_project:
|
| 32 |
+
wandb_entity:
|
| 33 |
+
wandb_watch:
|
| 34 |
+
wandb_run_id:
|
| 35 |
+
wandb_log_model:
|
| 36 |
+
|
| 37 |
+
gradient_accumulation_steps: 4
|
| 38 |
+
micro_batch_size: 2
|
| 39 |
+
num_epochs: 3
|
| 40 |
+
optimizer: paged_adamw_32bit
|
| 41 |
+
lr_scheduler: cosine
|
| 42 |
+
learning_rate: 0.0002
|
| 43 |
+
|
| 44 |
+
train_on_inputs: false
|
| 45 |
+
group_by_length: false
|
| 46 |
+
bf16: true
|
| 47 |
+
fp16: false
|
| 48 |
+
tf32: false
|
| 49 |
+
|
| 50 |
+
gradient_checkpointing: true
|
| 51 |
+
early_stopping_patience:
|
| 52 |
+
resume_from_checkpoint:
|
| 53 |
+
local_rank:
|
| 54 |
+
logging_steps: 1
|
| 55 |
+
xformers_attention:
|
| 56 |
+
flash_attention: true
|
| 57 |
+
|
| 58 |
+
warmup_steps: 10
|
| 59 |
+
eval_steps: 20
|
| 60 |
+
save_steps:
|
| 61 |
+
debug:
|
| 62 |
+
deepspeed:
|
| 63 |
+
weight_decay: 0.0
|
| 64 |
+
fsdp:
|
| 65 |
+
fsdp_config:
|
| 66 |
+
special_tokens:
|
| 67 |
+
bos_token: "<s>"
|
| 68 |
+
eos_token: "</s>"
|
| 69 |
+
unk_token: "<unk>"
|
examples/code-llama/34b/lora.yml
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
base_model: codellama/CodeLlama-34b-hf
|
| 2 |
+
base_model_config: codellama/CodeLlama-34b-hf
|
| 3 |
+
model_type: LlamaForCausalLM
|
| 4 |
+
tokenizer_type: CodeLlamaTokenizer
|
| 5 |
+
is_llama_derived_model: true
|
| 6 |
+
|
| 7 |
+
load_in_8bit: true
|
| 8 |
+
load_in_4bit: false
|
| 9 |
+
strict: false
|
| 10 |
+
|
| 11 |
+
datasets:
|
| 12 |
+
- path: mhenrichsen/alpaca_2k_test
|
| 13 |
+
type: alpaca
|
| 14 |
+
dataset_prepared_path: last_run_prepared
|
| 15 |
+
val_set_size: 0.01
|
| 16 |
+
output_dir: ./lora-out
|
| 17 |
+
|
| 18 |
+
sequence_len: 100000
|
| 19 |
+
sample_packing: true
|
| 20 |
+
|
| 21 |
+
adapter: lora
|
| 22 |
+
lora_model_dir:
|
| 23 |
+
lora_r: 32
|
| 24 |
+
lora_alpha: 16
|
| 25 |
+
lora_dropout: 0.05
|
| 26 |
+
lora_target_linear: true
|
| 27 |
+
lora_fan_in_fan_out:
|
| 28 |
+
|
| 29 |
+
wandb_project:
|
| 30 |
+
wandb_entity:
|
| 31 |
+
wandb_watch:
|
| 32 |
+
wandb_run_id:
|
| 33 |
+
wandb_log_model:
|
| 34 |
+
|
| 35 |
+
gradient_accumulation_steps: 4
|
| 36 |
+
micro_batch_size: 2
|
| 37 |
+
num_epochs: 3
|
| 38 |
+
optimizer: adamw_bnb_8bit
|
| 39 |
+
lr_scheduler: cosine
|
| 40 |
+
learning_rate: 0.0002
|
| 41 |
+
|
| 42 |
+
train_on_inputs: false
|
| 43 |
+
group_by_length: false
|
| 44 |
+
bf16: true
|
| 45 |
+
fp16: false
|
| 46 |
+
tf32: false
|
| 47 |
+
|
| 48 |
+
gradient_checkpointing: true
|
| 49 |
+
early_stopping_patience:
|
| 50 |
+
resume_from_checkpoint:
|
| 51 |
+
local_rank:
|
| 52 |
+
logging_steps: 1
|
| 53 |
+
xformers_attention:
|
| 54 |
+
flash_attention: true
|
| 55 |
+
|
| 56 |
+
warmup_steps: 10
|
| 57 |
+
eval_steps: 20
|
| 58 |
+
save_steps:
|
| 59 |
+
debug:
|
| 60 |
+
deepspeed:
|
| 61 |
+
weight_decay: 0.0
|
| 62 |
+
fsdp:
|
| 63 |
+
fsdp_config:
|
| 64 |
+
special_tokens:
|
| 65 |
+
bos_token: "<s>"
|
| 66 |
+
eos_token: "</s>"
|
| 67 |
+
unk_token: "<unk>"
|
examples/code-llama/34b/qlora.yml
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
base_model: codellama/CodeLlama-34b-hf
|
| 2 |
+
base_model_config: codellama/CodeLlama-34b-hf
|
| 3 |
+
model_type: LlamaForCausalLM
|
| 4 |
+
tokenizer_type: CodeLlamaTokenizer
|
| 5 |
+
is_llama_derived_model: true
|
| 6 |
+
|
| 7 |
+
load_in_8bit: false
|
| 8 |
+
load_in_4bit: true
|
| 9 |
+
strict: false
|
| 10 |
+
|
| 11 |
+
datasets:
|
| 12 |
+
- path: mhenrichsen/alpaca_2k_test
|
| 13 |
+
type: alpaca
|
| 14 |
+
dataset_prepared_path: last_run_prepared
|
| 15 |
+
val_set_size: 0.01
|
| 16 |
+
output_dir: ./qlora-out
|
| 17 |
+
|
| 18 |
+
adapter: qlora
|
| 19 |
+
lora_model_dir:
|
| 20 |
+
|
| 21 |
+
sequence_len: 100000
|
| 22 |
+
sample_packing: true
|
| 23 |
+
|
| 24 |
+
lora_r: 32
|
| 25 |
+
lora_alpha: 16
|
| 26 |
+
lora_dropout: 0.05
|
| 27 |
+
lora_target_modules:
|
| 28 |
+
lora_target_linear: true
|
| 29 |
+
lora_fan_in_fan_out:
|
| 30 |
+
|
| 31 |
+
wandb_project:
|
| 32 |
+
wandb_entity:
|
| 33 |
+
wandb_watch:
|
| 34 |
+
wandb_run_id:
|
| 35 |
+
wandb_log_model:
|
| 36 |
+
|
| 37 |
+
gradient_accumulation_steps: 4
|
| 38 |
+
micro_batch_size: 2
|
| 39 |
+
num_epochs: 3
|
| 40 |
+
optimizer: paged_adamw_32bit
|
| 41 |
+
lr_scheduler: cosine
|
| 42 |
+
learning_rate: 0.0002
|
| 43 |
+
|
| 44 |
+
train_on_inputs: false
|
| 45 |
+
group_by_length: false
|
| 46 |
+
bf16: true
|
| 47 |
+
fp16: false
|
| 48 |
+
tf32: false
|
| 49 |
+
|
| 50 |
+
gradient_checkpointing: true
|
| 51 |
+
early_stopping_patience:
|
| 52 |
+
resume_from_checkpoint:
|
| 53 |
+
local_rank:
|
| 54 |
+
logging_steps: 1
|
| 55 |
+
xformers_attention:
|
| 56 |
+
flash_attention: true
|
| 57 |
+
|
| 58 |
+
warmup_steps: 10
|
| 59 |
+
eval_steps: 20
|
| 60 |
+
save_steps:
|
| 61 |
+
debug:
|
| 62 |
+
deepspeed:
|
| 63 |
+
weight_decay: 0.0
|
| 64 |
+
fsdp:
|
| 65 |
+
fsdp_config:
|
| 66 |
+
special_tokens:
|
| 67 |
+
bos_token: "<s>"
|
| 68 |
+
eos_token: "</s>"
|
| 69 |
+
unk_token: "<unk>"
|
examples/code-llama/7b/lora.yml
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
base_model: codellama/CodeLlama-7b-hf
|
| 2 |
+
base_model_config: codellama/CodeLlama-7b-hf
|
| 3 |
+
model_type: LlamaForCausalLM
|
| 4 |
+
tokenizer_type: CodeLlamaTokenizer
|
| 5 |
+
is_llama_derived_model: true
|
| 6 |
+
|
| 7 |
+
load_in_8bit: true
|
| 8 |
+
load_in_4bit: false
|
| 9 |
+
strict: false
|
| 10 |
+
|
| 11 |
+
datasets:
|
| 12 |
+
- path: mhenrichsen/alpaca_2k_test
|
| 13 |
+
type: alpaca
|
| 14 |
+
dataset_prepared_path: last_run_prepared
|
| 15 |
+
val_set_size: 0.01
|
| 16 |
+
output_dir: ./lora-out
|
| 17 |
+
|
| 18 |
+
sequence_len: 100000
|
| 19 |
+
sample_packing: true
|
| 20 |
+
|
| 21 |
+
adapter: lora
|
| 22 |
+
lora_model_dir:
|
| 23 |
+
lora_r: 32
|
| 24 |
+
lora_alpha: 16
|
| 25 |
+
lora_dropout: 0.05
|
| 26 |
+
lora_target_linear: true
|
| 27 |
+
lora_fan_in_fan_out:
|
| 28 |
+
|
| 29 |
+
wandb_project:
|
| 30 |
+
wandb_entity:
|
| 31 |
+
wandb_watch:
|
| 32 |
+
wandb_run_id:
|
| 33 |
+
wandb_log_model:
|
| 34 |
+
|
| 35 |
+
gradient_accumulation_steps: 4
|
| 36 |
+
micro_batch_size: 2
|
| 37 |
+
num_epochs: 3
|
| 38 |
+
optimizer: adamw_bnb_8bit
|
| 39 |
+
lr_scheduler: cosine
|
| 40 |
+
learning_rate: 0.0002
|
| 41 |
+
|
| 42 |
+
train_on_inputs: false
|
| 43 |
+
group_by_length: false
|
| 44 |
+
bf16: true
|
| 45 |
+
fp16: false
|
| 46 |
+
tf32: false
|
| 47 |
+
|
| 48 |
+
gradient_checkpointing: true
|
| 49 |
+
early_stopping_patience:
|
| 50 |
+
resume_from_checkpoint:
|
| 51 |
+
local_rank:
|
| 52 |
+
logging_steps: 1
|
| 53 |
+
xformers_attention:
|
| 54 |
+
flash_attention: true
|
| 55 |
+
|
| 56 |
+
warmup_steps: 10
|
| 57 |
+
eval_steps: 20
|
| 58 |
+
save_steps:
|
| 59 |
+
debug:
|
| 60 |
+
deepspeed:
|
| 61 |
+
weight_decay: 0.0
|
| 62 |
+
fsdp:
|
| 63 |
+
fsdp_config:
|
| 64 |
+
special_tokens:
|
| 65 |
+
bos_token: "<s>"
|
| 66 |
+
eos_token: "</s>"
|
| 67 |
+
unk_token: "<unk>"
|
examples/code-llama/7b/qlora.yml
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
base_model: codellama/CodeLlama-7b-hf
|
| 2 |
+
base_model_config: codellama/CodeLlama-7b-hf
|
| 3 |
+
model_type: LlamaForCausalLM
|
| 4 |
+
tokenizer_type: CodeLlamaTokenizer
|
| 5 |
+
is_llama_derived_model: true
|
| 6 |
+
|
| 7 |
+
load_in_8bit: false
|
| 8 |
+
load_in_4bit: true
|
| 9 |
+
strict: false
|
| 10 |
+
|
| 11 |
+
datasets:
|
| 12 |
+
- path: mhenrichsen/alpaca_2k_test
|
| 13 |
+
type: alpaca
|
| 14 |
+
dataset_prepared_path: last_run_prepared
|
| 15 |
+
val_set_size: 0.01
|
| 16 |
+
output_dir: ./qlora-out
|
| 17 |
+
|
| 18 |
+
adapter: qlora
|
| 19 |
+
lora_model_dir:
|
| 20 |
+
|
| 21 |
+
sequence_len: 100000
|
| 22 |
+
sample_packing: true
|
| 23 |
+
|
| 24 |
+
lora_r: 32
|
| 25 |
+
lora_alpha: 16
|
| 26 |
+
lora_dropout: 0.05
|
| 27 |
+
lora_target_modules:
|
| 28 |
+
lora_target_linear: true
|
| 29 |
+
lora_fan_in_fan_out:
|
| 30 |
+
|
| 31 |
+
wandb_project:
|
| 32 |
+
wandb_entity:
|
| 33 |
+
wandb_watch:
|
| 34 |
+
wandb_run_id:
|
| 35 |
+
wandb_log_model:
|
| 36 |
+
|
| 37 |
+
gradient_accumulation_steps: 4
|
| 38 |
+
micro_batch_size: 2
|
| 39 |
+
num_epochs: 3
|
| 40 |
+
optimizer: paged_adamw_32bit
|
| 41 |
+
lr_scheduler: cosine
|
| 42 |
+
learning_rate: 0.0002
|
| 43 |
+
|
| 44 |
+
train_on_inputs: false
|
| 45 |
+
group_by_length: false
|
| 46 |
+
bf16: true
|
| 47 |
+
fp16: false
|
| 48 |
+
tf32: false
|
| 49 |
+
|
| 50 |
+
gradient_checkpointing: true
|
| 51 |
+
early_stopping_patience:
|
| 52 |
+
resume_from_checkpoint:
|
| 53 |
+
local_rank:
|
| 54 |
+
logging_steps: 1
|
| 55 |
+
xformers_attention:
|
| 56 |
+
flash_attention: true
|
| 57 |
+
|
| 58 |
+
warmup_steps: 10
|
| 59 |
+
eval_steps: 20
|
| 60 |
+
save_steps:
|
| 61 |
+
debug:
|
| 62 |
+
deepspeed:
|
| 63 |
+
weight_decay: 0.0
|
| 64 |
+
fsdp:
|
| 65 |
+
fsdp_config:
|
| 66 |
+
special_tokens:
|
| 67 |
+
bos_token: "<s>"
|
| 68 |
+
eos_token: "</s>"
|
| 69 |
+
unk_token: "<unk>"
|
examples/code-llama/README.md
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Overview
|
| 2 |
+
|
| 3 |
+
This is an example of CodeLLaMA configuration for 7b, 13b and 34b.
|
| 4 |
+
|
| 5 |
+
The 7b variant fits on any 24GB VRAM GPU and will take up about 17 GB of VRAM during training if using qlora and 20 GB if using lora. On a RTX 4090 it trains 3 epochs of the default dataset in about 15 minutes.
|
| 6 |
+
|
| 7 |
+
The 13b variant will fit if you change these settings to these values:
|
| 8 |
+
gradient_accumulation_steps: 2
|
| 9 |
+
micro_batch_size: 1
|
| 10 |
+
|
| 11 |
+
The 34b variant does not fit on 24GB of VRAM - you will need something with +40 gb VRAM that also supports flash attention v2 - A6000 or A100 are good choices.
|
| 12 |
+
|
| 13 |
+
```shell
|
| 14 |
+
accelerate launch scripts/finetune.py examples/code-llama/[MODEL_SIZE]/qlora.yml
|
| 15 |
+
|
| 16 |
+
```
|
| 17 |
+
or
|
| 18 |
+
|
| 19 |
+
```shell
|
| 20 |
+
accelerate launch scripts/finetune.py examples/code-llama/[MODEL_SIZE]/lora.yml
|
| 21 |
+
|
| 22 |
+
```
|
examples/llama-2/relora.yml
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
base_model: meta-llama/Llama-2-7b-hf
|
| 2 |
+
base_model_config: meta-llama/Llama-2-7b-hf
|
| 3 |
+
model_type: LlamaForCausalLM
|
| 4 |
+
tokenizer_type: LlamaTokenizer
|
| 5 |
+
is_llama_derived_model: true
|
| 6 |
+
|
| 7 |
+
load_in_8bit: false
|
| 8 |
+
load_in_4bit: true
|
| 9 |
+
strict: false
|
| 10 |
+
|
| 11 |
+
datasets:
|
| 12 |
+
- path: teknium/GPT4-LLM-Cleaned
|
| 13 |
+
type: alpaca
|
| 14 |
+
dataset_prepared_path: last_run_prepared
|
| 15 |
+
val_set_size: 0.01
|
| 16 |
+
output_dir: ./relora-out
|
| 17 |
+
|
| 18 |
+
adapter: qlora
|
| 19 |
+
lora_model_dir:
|
| 20 |
+
|
| 21 |
+
sequence_len: 4096
|
| 22 |
+
sample_packing: true
|
| 23 |
+
|
| 24 |
+
lora_r: 8
|
| 25 |
+
lora_alpha: 16
|
| 26 |
+
lora_dropout: 0.05
|
| 27 |
+
lora_target_modules:
|
| 28 |
+
lora_target_linear: true
|
| 29 |
+
lora_fan_in_fan_out:
|
| 30 |
+
|
| 31 |
+
relora_steps: 150
|
| 32 |
+
relora_warmup_steps: 10
|
| 33 |
+
relora_cpu_offload: false
|
| 34 |
+
|
| 35 |
+
wandb_project:
|
| 36 |
+
wandb_entity:
|
| 37 |
+
wandb_watch:
|
| 38 |
+
wandb_run_id:
|
| 39 |
+
wandb_log_model:
|
| 40 |
+
|
| 41 |
+
gradient_accumulation_steps: 4
|
| 42 |
+
micro_batch_size: 4
|
| 43 |
+
num_epochs: 3
|
| 44 |
+
optimizer: adamw_bnb_8bit
|
| 45 |
+
lr_scheduler: cosine
|
| 46 |
+
learning_rate: 0.0002
|
| 47 |
+
|
| 48 |
+
train_on_inputs: false
|
| 49 |
+
group_by_length: false
|
| 50 |
+
bf16: true
|
| 51 |
+
fp16: false
|
| 52 |
+
tf32: false
|
| 53 |
+
|
| 54 |
+
gradient_checkpointing: true
|
| 55 |
+
early_stopping_patience:
|
| 56 |
+
resume_from_checkpoint:
|
| 57 |
+
local_rank:
|
| 58 |
+
logging_steps: 1
|
| 59 |
+
xformers_attention:
|
| 60 |
+
flash_attention: true
|
| 61 |
+
|
| 62 |
+
warmup_steps: 10
|
| 63 |
+
eval_steps: 20
|
| 64 |
+
save_steps: 50
|
| 65 |
+
debug:
|
| 66 |
+
deepspeed:
|
| 67 |
+
weight_decay: 0.0
|
| 68 |
+
fsdp:
|
| 69 |
+
fsdp_config:
|
| 70 |
+
special_tokens:
|
| 71 |
+
bos_token: "<s>"
|
| 72 |
+
eos_token: "</s>"
|
| 73 |
+
unk_token: "<unk>"
|
scripts/finetune.py
CHANGED
|
@@ -82,6 +82,8 @@ def do_inference(cfg, model, tokenizer, prompter: Optional[str]):
|
|
| 82 |
max_seq_len=255, mem_freq=50, top_k=5, max_cache_size=None
|
| 83 |
)
|
| 84 |
|
|
|
|
|
|
|
| 85 |
while True:
|
| 86 |
print("=" * 80)
|
| 87 |
# support for multiline inputs
|
|
|
|
| 82 |
max_seq_len=255, mem_freq=50, top_k=5, max_cache_size=None
|
| 83 |
)
|
| 84 |
|
| 85 |
+
model = model.to(cfg.device)
|
| 86 |
+
|
| 87 |
while True:
|
| 88 |
print("=" * 80)
|
| 89 |
# support for multiline inputs
|
src/axolotl/utils/trainer.py
CHANGED
|
@@ -10,19 +10,13 @@ from functools import partial
|
|
| 10 |
from pathlib import Path
|
| 11 |
from typing import Optional, Union
|
| 12 |
|
| 13 |
-
import bitsandbytes as bnb
|
| 14 |
import numpy as np
|
| 15 |
import torch.cuda
|
| 16 |
-
import transformers
|
| 17 |
from datasets import Dataset, set_caching_enabled
|
| 18 |
-
from torch import nn
|
| 19 |
from torch.optim.lr_scheduler import OneCycleLR
|
| 20 |
from torch.utils.data import DataLoader, DistributedSampler, RandomSampler
|
| 21 |
from transformers import EarlyStoppingCallback, Trainer, TrainingArguments
|
| 22 |
-
from transformers.trainer_pt_utils import
|
| 23 |
-
SequentialDistributedSampler,
|
| 24 |
-
get_parameter_names,
|
| 25 |
-
)
|
| 26 |
|
| 27 |
from axolotl.monkeypatch.relora import ReLoRACallback, ReLoRAScheduler
|
| 28 |
from axolotl.utils.callbacks import (
|
|
@@ -32,10 +26,7 @@ from axolotl.utils.callbacks import (
|
|
| 32 |
)
|
| 33 |
from axolotl.utils.collators import DataCollatorForSeq2Seq
|
| 34 |
from axolotl.utils.dataloader import MultipackDistributedDataloader
|
| 35 |
-
from axolotl.utils.schedulers import
|
| 36 |
-
InterpolatingLogScheduler,
|
| 37 |
-
get_cosine_schedule_with_quadratic_warmup,
|
| 38 |
-
)
|
| 39 |
|
| 40 |
LOG = logging.getLogger("axolotl")
|
| 41 |
|
|
@@ -570,66 +561,6 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer, total_num_
|
|
| 570 |
if Path(cfg.torchdistx_path).exists():
|
| 571 |
sys.path.append(cfg.torchdistx_path)
|
| 572 |
importlib.import_module("torchdistx")
|
| 573 |
-
if (
|
| 574 |
-
cfg.optimizer == "adamw_bnb_8bit"
|
| 575 |
-
and not cfg.gptq
|
| 576 |
-
and "deepspeed" not in training_arguments_kwargs
|
| 577 |
-
and not cfg.fsdp
|
| 578 |
-
):
|
| 579 |
-
decay_parameters = get_parameter_names(model, [nn.LayerNorm])
|
| 580 |
-
decay_parameters = [name for name in decay_parameters if "bias" not in name]
|
| 581 |
-
optimizer_grouped_parameters = [
|
| 582 |
-
{
|
| 583 |
-
"params": [
|
| 584 |
-
p
|
| 585 |
-
for n, p in model.named_parameters()
|
| 586 |
-
if (n in decay_parameters and p.requires_grad)
|
| 587 |
-
],
|
| 588 |
-
"weight_decay": training_args.weight_decay,
|
| 589 |
-
},
|
| 590 |
-
{
|
| 591 |
-
"params": [
|
| 592 |
-
p
|
| 593 |
-
for n, p in model.named_parameters()
|
| 594 |
-
if (n not in decay_parameters and p.requires_grad)
|
| 595 |
-
],
|
| 596 |
-
"weight_decay": 0.0,
|
| 597 |
-
},
|
| 598 |
-
]
|
| 599 |
-
|
| 600 |
-
optimizer = bnb.optim.Adam8bit(
|
| 601 |
-
optimizer_grouped_parameters,
|
| 602 |
-
betas=(training_args.adam_beta1, training_args.adam_beta2),
|
| 603 |
-
eps=training_args.adam_epsilon,
|
| 604 |
-
lr=training_args.learning_rate,
|
| 605 |
-
)
|
| 606 |
-
|
| 607 |
-
if cfg.lr_scheduler == "one_cycle":
|
| 608 |
-
lr_scheduler_kwargs = (
|
| 609 |
-
cfg.lr_scheduler_kwargs if cfg.lr_scheduler_kwargs else {}
|
| 610 |
-
)
|
| 611 |
-
lr_scheduler = OneCycleLR(
|
| 612 |
-
optimizer,
|
| 613 |
-
cfg.learning_rate,
|
| 614 |
-
total_steps=total_num_steps,
|
| 615 |
-
epochs=cfg.num_epochs,
|
| 616 |
-
div_factor=cfg.lr_div_factor if cfg.lr_div_factor else 6,
|
| 617 |
-
**lr_scheduler_kwargs,
|
| 618 |
-
)
|
| 619 |
-
elif cfg.lr_scheduler == "log_sweep":
|
| 620 |
-
lr_scheduler = InterpolatingLogScheduler(
|
| 621 |
-
optimizer,
|
| 622 |
-
cfg.warmup_steps,
|
| 623 |
-
cfg.log_sweep_min_lr if cfg.log_sweep_min_lr else 1e-10,
|
| 624 |
-
cfg.log_sweep_max_lr if cfg.log_sweep_max_lr else 10,
|
| 625 |
-
)
|
| 626 |
-
else:
|
| 627 |
-
lr_scheduler = transformers.get_cosine_schedule_with_warmup(
|
| 628 |
-
optimizer,
|
| 629 |
-
training_args.warmup_steps,
|
| 630 |
-
total_num_steps,
|
| 631 |
-
)
|
| 632 |
-
trainer_kwargs["optimizers"] = (optimizer, lr_scheduler)
|
| 633 |
|
| 634 |
callbacks = []
|
| 635 |
callbacks.append(GPUStatsCallback(cfg))
|
|
|
|
| 10 |
from pathlib import Path
|
| 11 |
from typing import Optional, Union
|
| 12 |
|
|
|
|
| 13 |
import numpy as np
|
| 14 |
import torch.cuda
|
|
|
|
| 15 |
from datasets import Dataset, set_caching_enabled
|
|
|
|
| 16 |
from torch.optim.lr_scheduler import OneCycleLR
|
| 17 |
from torch.utils.data import DataLoader, DistributedSampler, RandomSampler
|
| 18 |
from transformers import EarlyStoppingCallback, Trainer, TrainingArguments
|
| 19 |
+
from transformers.trainer_pt_utils import SequentialDistributedSampler
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
from axolotl.monkeypatch.relora import ReLoRACallback, ReLoRAScheduler
|
| 22 |
from axolotl.utils.callbacks import (
|
|
|
|
| 26 |
)
|
| 27 |
from axolotl.utils.collators import DataCollatorForSeq2Seq
|
| 28 |
from axolotl.utils.dataloader import MultipackDistributedDataloader
|
| 29 |
+
from axolotl.utils.schedulers import get_cosine_schedule_with_quadratic_warmup
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
LOG = logging.getLogger("axolotl")
|
| 32 |
|
|
|
|
| 561 |
if Path(cfg.torchdistx_path).exists():
|
| 562 |
sys.path.append(cfg.torchdistx_path)
|
| 563 |
importlib.import_module("torchdistx")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 564 |
|
| 565 |
callbacks = []
|
| 566 |
callbacks.append(GPUStatsCallback(cfg))
|