more tweaks to do pre-training with bettertransformers
Browse files- scripts/finetune.py +2 -0
- src/axolotl/utils/callbacks.py +24 -0
- src/axolotl/utils/data.py +7 -5
- src/axolotl/utils/models.py +2 -2
- src/axolotl/utils/trainer.py +7 -1
- src/axolotl/utils/validation.py +12 -4
scripts/finetune.py
CHANGED
|
@@ -14,6 +14,7 @@ import torch
|
|
| 14 |
import yaml
|
| 15 |
|
| 16 |
# add src to the pythonpath so we don't need to pip install this
|
|
|
|
| 17 |
from optimum.bettertransformer import BetterTransformer
|
| 18 |
from transformers import GenerationConfig, TextStreamer
|
| 19 |
|
|
@@ -214,6 +215,7 @@ def train(
|
|
| 214 |
train_dataset = load_pretraining_dataset(
|
| 215 |
pretraining_dataset, tokenizer, max_tokens=cfg.sequence_len
|
| 216 |
)
|
|
|
|
| 217 |
eval_dataset = None
|
| 218 |
|
| 219 |
if cfg.debug or "debug" in kwargs:
|
|
|
|
| 14 |
import yaml
|
| 15 |
|
| 16 |
# add src to the pythonpath so we don't need to pip install this
|
| 17 |
+
from datasets import Dataset
|
| 18 |
from optimum.bettertransformer import BetterTransformer
|
| 19 |
from transformers import GenerationConfig, TextStreamer
|
| 20 |
|
|
|
|
| 215 |
train_dataset = load_pretraining_dataset(
|
| 216 |
pretraining_dataset, tokenizer, max_tokens=cfg.sequence_len
|
| 217 |
)
|
| 218 |
+
train_dataset = Dataset.from_list(list(train_dataset))
|
| 219 |
eval_dataset = None
|
| 220 |
|
| 221 |
if cfg.debug or "debug" in kwargs:
|
src/axolotl/utils/callbacks.py
CHANGED
|
@@ -2,6 +2,7 @@
|
|
| 2 |
|
| 3 |
import os
|
| 4 |
|
|
|
|
| 5 |
from transformers import (
|
| 6 |
TrainerCallback,
|
| 7 |
TrainerControl,
|
|
@@ -30,3 +31,26 @@ class SavePeftModelCallback(TrainerCallback): # pylint: disable=too-few-public-
|
|
| 30 |
kwargs["model"].save_pretrained(peft_model_path)
|
| 31 |
|
| 32 |
return control
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
import os
|
| 4 |
|
| 5 |
+
from optimum.bettertransformer import BetterTransformer
|
| 6 |
from transformers import (
|
| 7 |
TrainerCallback,
|
| 8 |
TrainerControl,
|
|
|
|
| 31 |
kwargs["model"].save_pretrained(peft_model_path)
|
| 32 |
|
| 33 |
return control
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class SaveBetterTransformerModelCallback(
|
| 37 |
+
TrainerCallback
|
| 38 |
+
): # pylint: disable=too-few-public-methods
|
| 39 |
+
"""Callback to save the BatterTransformer wrapped model"""
|
| 40 |
+
|
| 41 |
+
def on_save(
|
| 42 |
+
self,
|
| 43 |
+
args: TrainingArguments,
|
| 44 |
+
state: TrainerState,
|
| 45 |
+
control: TrainerControl,
|
| 46 |
+
**kwargs,
|
| 47 |
+
):
|
| 48 |
+
checkpoint_folder = os.path.join(
|
| 49 |
+
args.output_dir,
|
| 50 |
+
f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}",
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
model = BetterTransformer.reverse(kwargs["model"])
|
| 54 |
+
model.save_pretrained(checkpoint_folder)
|
| 55 |
+
|
| 56 |
+
return control
|
src/axolotl/utils/data.py
CHANGED
|
@@ -409,14 +409,16 @@ class PretrainingDatasetWrapper(IterableDataset):
|
|
| 409 |
buffer = []
|
| 410 |
for sample in load_dataset(
|
| 411 |
self.dataset_path,
|
| 412 |
-
|
| 413 |
-
split="train",
|
| 414 |
-
streaming=True,
|
| 415 |
-
).shuffle(buffer_size=10000):
|
| 416 |
buffer += self.tokenizer(sample["text"])["input_ids"]
|
| 417 |
buffer += [self.tokenizer.eos_token_id]
|
| 418 |
while len(buffer) > self.max_tokens:
|
| 419 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
buffer = buffer[self.max_tokens :]
|
| 421 |
|
| 422 |
|
|
|
|
| 409 |
buffer = []
|
| 410 |
for sample in load_dataset(
|
| 411 |
self.dataset_path,
|
| 412 |
+
)["train"].shuffle():
|
|
|
|
|
|
|
|
|
|
| 413 |
buffer += self.tokenizer(sample["text"])["input_ids"]
|
| 414 |
buffer += [self.tokenizer.eos_token_id]
|
| 415 |
while len(buffer) > self.max_tokens:
|
| 416 |
+
input_ids = torch.tensor(buffer[: self.max_tokens])
|
| 417 |
+
yield {
|
| 418 |
+
"input_ids": input_ids,
|
| 419 |
+
"attention_mask": torch.ones(input_ids.size()),
|
| 420 |
+
"labels": input_ids,
|
| 421 |
+
}
|
| 422 |
buffer = buffer[self.max_tokens :]
|
| 423 |
|
| 424 |
|
src/axolotl/utils/models.py
CHANGED
|
@@ -10,8 +10,8 @@ from typing import TYPE_CHECKING, Optional, Tuple # noqa: F401
|
|
| 10 |
import bitsandbytes as bnb
|
| 11 |
import torch
|
| 12 |
import transformers
|
| 13 |
-
from transformers import PreTrainedModel # noqa: F401
|
| 14 |
from optimum.bettertransformer import BetterTransformer
|
|
|
|
| 15 |
from transformers import (
|
| 16 |
AutoConfig,
|
| 17 |
AutoModelForCausalLM,
|
|
@@ -136,7 +136,7 @@ def load_model(
|
|
| 136 |
logging.info("patching with xpos rope")
|
| 137 |
replace_llama_rope_with_xpos_rope()
|
| 138 |
|
| 139 |
-
if cfg.bf16:
|
| 140 |
torch_dtype = torch.bfloat16
|
| 141 |
elif cfg.load_in_8bit or cfg.fp16 or cfg.float16:
|
| 142 |
torch_dtype = torch.float16
|
|
|
|
| 10 |
import bitsandbytes as bnb
|
| 11 |
import torch
|
| 12 |
import transformers
|
|
|
|
| 13 |
from optimum.bettertransformer import BetterTransformer
|
| 14 |
+
from transformers import PreTrainedModel # noqa: F401
|
| 15 |
from transformers import (
|
| 16 |
AutoConfig,
|
| 17 |
AutoModelForCausalLM,
|
|
|
|
| 136 |
logging.info("patching with xpos rope")
|
| 137 |
replace_llama_rope_with_xpos_rope()
|
| 138 |
|
| 139 |
+
if cfg.bf16 or cfg.bfloat16:
|
| 140 |
torch_dtype = torch.bfloat16
|
| 141 |
elif cfg.load_in_8bit or cfg.fp16 or cfg.float16:
|
| 142 |
torch_dtype = torch.float16
|
src/axolotl/utils/trainer.py
CHANGED
|
@@ -16,7 +16,10 @@ from torch.optim.lr_scheduler import OneCycleLR
|
|
| 16 |
from transformers import EarlyStoppingCallback, Trainer
|
| 17 |
from transformers.trainer_pt_utils import get_parameter_names
|
| 18 |
|
| 19 |
-
from axolotl.utils.callbacks import
|
|
|
|
|
|
|
|
|
|
| 20 |
from axolotl.utils.schedulers import InterpolatingLogScheduler
|
| 21 |
|
| 22 |
|
|
@@ -228,6 +231,9 @@ def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer):
|
|
| 228 |
]: # only save in rank 0
|
| 229 |
callbacks.append(SavePeftModelCallback)
|
| 230 |
|
|
|
|
|
|
|
|
|
|
| 231 |
data_collator_kwargs = {
|
| 232 |
"padding": True,
|
| 233 |
}
|
|
|
|
| 16 |
from transformers import EarlyStoppingCallback, Trainer
|
| 17 |
from transformers.trainer_pt_utils import get_parameter_names
|
| 18 |
|
| 19 |
+
from axolotl.utils.callbacks import (
|
| 20 |
+
SaveBetterTransformerModelCallback,
|
| 21 |
+
SavePeftModelCallback,
|
| 22 |
+
)
|
| 23 |
from axolotl.utils.schedulers import InterpolatingLogScheduler
|
| 24 |
|
| 25 |
|
|
|
|
| 231 |
]: # only save in rank 0
|
| 232 |
callbacks.append(SavePeftModelCallback)
|
| 233 |
|
| 234 |
+
if hasattr(model, "use_bettertransformer") and model.use_bettertransformer is True:
|
| 235 |
+
callbacks.append(SaveBetterTransformerModelCallback)
|
| 236 |
+
|
| 237 |
data_collator_kwargs = {
|
| 238 |
"padding": True,
|
| 239 |
}
|
src/axolotl/utils/validation.py
CHANGED
|
@@ -1,8 +1,10 @@
|
|
| 1 |
"""Module for validating config files"""
|
| 2 |
|
| 3 |
import logging
|
|
|
|
| 4 |
import torch
|
| 5 |
|
|
|
|
| 6 |
def validate_config(cfg):
|
| 7 |
if cfg.gradient_accumulation_steps and cfg.batch_size:
|
| 8 |
raise ValueError(
|
|
@@ -59,14 +61,20 @@ def validate_config(cfg):
|
|
| 59 |
|
| 60 |
if cfg.flash_optimum is True:
|
| 61 |
if cfg.adapter:
|
| 62 |
-
logging.warning(
|
|
|
|
|
|
|
| 63 |
if cfg.fp16 or cfg.bf16:
|
| 64 |
raise ValueError("AMP is not supported with BetterTransformer")
|
| 65 |
if cfg.float16 is not True:
|
| 66 |
-
logging.warning(
|
| 67 |
-
|
|
|
|
|
|
|
| 68 |
logging.warning("torch>=2.0.0 required")
|
| 69 |
-
raise ValueError(
|
|
|
|
|
|
|
| 70 |
|
| 71 |
# TODO
|
| 72 |
# MPT 7b
|
|
|
|
| 1 |
"""Module for validating config files"""
|
| 2 |
|
| 3 |
import logging
|
| 4 |
+
|
| 5 |
import torch
|
| 6 |
|
| 7 |
+
|
| 8 |
def validate_config(cfg):
|
| 9 |
if cfg.gradient_accumulation_steps and cfg.batch_size:
|
| 10 |
raise ValueError(
|
|
|
|
| 61 |
|
| 62 |
if cfg.flash_optimum is True:
|
| 63 |
if cfg.adapter:
|
| 64 |
+
logging.warning(
|
| 65 |
+
"BetterTransformers probably doesn't work with PEFT adapters"
|
| 66 |
+
)
|
| 67 |
if cfg.fp16 or cfg.bf16:
|
| 68 |
raise ValueError("AMP is not supported with BetterTransformer")
|
| 69 |
if cfg.float16 is not True:
|
| 70 |
+
logging.warning(
|
| 71 |
+
"You should probably set float16 to true to load the model in float16 for BetterTransformers"
|
| 72 |
+
)
|
| 73 |
+
if int(torch.__version__.split(".")[0]) < 2:
|
| 74 |
logging.warning("torch>=2.0.0 required")
|
| 75 |
+
raise ValueError(
|
| 76 |
+
f"flash_optimum for BetterTransformers may not be used with {torch.__version__}"
|
| 77 |
+
)
|
| 78 |
|
| 79 |
# TODO
|
| 80 |
# MPT 7b
|