kallewoof
fix: switch to using the HuggingFace Transformers NEFT implementation (#941)
ef24342
unverified
| """Prepare and train a model on a dataset. Can also infer from a model or merge lora""" | |
| import os | |
| import signal | |
| import sys | |
| from dataclasses import dataclass | |
| from pathlib import Path | |
| from typing import Optional | |
| import torch | |
| import transformers.modelcard | |
| from accelerate.logging import get_logger | |
| from datasets import Dataset | |
| from optimum.bettertransformer import BetterTransformer | |
| from transformers.deepspeed import is_deepspeed_zero3_enabled | |
| from axolotl.common.cli import TrainerCliArgs | |
| from axolotl.logging_config import configure_logging | |
| from axolotl.utils.dict import DictDefault | |
| from axolotl.utils.freeze import freeze_parameters_except | |
| from axolotl.utils.models import load_model, load_tokenizer | |
| from axolotl.utils.trainer import setup_trainer | |
| project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
| src_dir = os.path.join(project_root, "src") | |
| sys.path.insert(0, src_dir) | |
| configure_logging() | |
| LOG = get_logger("axolotl.train") | |
| class TrainDatasetMeta: | |
| """ | |
| dataclass to capture the dataset specific options for training | |
| """ | |
| train_dataset: Dataset | |
| eval_dataset: Optional[Dataset] = None | |
| total_num_steps: Optional[int] = None | |
| def train( | |
| *, cfg: DictDefault, cli_args: TrainerCliArgs, dataset_meta: TrainDatasetMeta | |
| ): | |
| # load the tokenizer first | |
| LOG.debug( | |
| f"loading tokenizer... {cfg.tokenizer_config or cfg.base_model_config}", | |
| main_process_only=True, | |
| ) | |
| tokenizer = load_tokenizer(cfg) | |
| train_dataset = dataset_meta.train_dataset | |
| eval_dataset = dataset_meta.eval_dataset | |
| total_num_steps = dataset_meta.total_num_steps | |
| # Load the model and tokenizer | |
| msg = "loading model" | |
| if cfg.adapter: | |
| msg += " and peft_config..." | |
| LOG.debug(msg) | |
| model, peft_config = load_model(cfg, tokenizer, inference=cli_args.inference) | |
| safe_serialization = cfg.save_safetensors is True | |
| if cfg.resume_from_checkpoint is None and cfg.auto_resume_from_checkpoints: | |
| possible_checkpoints = [ | |
| str(cp) for cp in Path(cfg.output_dir).glob("checkpoint-*") | |
| ] | |
| if len(possible_checkpoints) > 0: | |
| sorted_paths = sorted( | |
| possible_checkpoints, | |
| key=lambda path: int(path.split("-")[-1]), | |
| ) | |
| cfg.resume_from_checkpoint = sorted_paths[-1] | |
| LOG.info( | |
| f"Using Auto-resume functionality to start with checkpoint at {cfg.resume_from_checkpoint}" | |
| ) | |
| resume_from_checkpoint = cfg.resume_from_checkpoint | |
| if cfg.unfrozen_parameters: | |
| freeze_parameters_except(model, cfg.unfrozen_parameters) | |
| trainer = setup_trainer( | |
| cfg, train_dataset, eval_dataset, model, tokenizer, total_num_steps | |
| ) | |
| if hasattr(model, "config"): | |
| model.config.use_cache = False | |
| # go ahead and presave, so we have the adapter config available to inspect | |
| if peft_config: | |
| LOG.info(f"Pre-saving adapter config to {cfg.output_dir}") | |
| peft_config.save_pretrained(cfg.output_dir) | |
| # additionally presave the tokenizer and model configs | |
| if not Path(cfg.output_dir).is_dir(): | |
| os.makedirs(cfg.output_dir, exist_ok=True) | |
| tokenizer.save_pretrained(str(Path(cfg.output_dir))) | |
| if hasattr(model, "config"): | |
| model.config.save_pretrained(str(Path(cfg.output_dir))) | |
| # In case we want to stop early with ctrl+c, this is a nice to have to save the pretrained model | |
| if cfg.local_rank == 0: | |
| def terminate_handler(_, __, model): | |
| if cfg.flash_optimum: | |
| model = BetterTransformer.reverse(model) | |
| model.save_pretrained(cfg.output_dir, safe_serialization=safe_serialization) | |
| sys.exit(0) | |
| signal.signal( | |
| signal.SIGINT, lambda signum, frame: terminate_handler(signum, frame, model) | |
| ) | |
| badge_markdown = """[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)""" | |
| transformers.modelcard.AUTOGENERATED_TRAINER_COMMENT += f"\n{badge_markdown}" | |
| LOG.info("Starting trainer...") | |
| if cfg.group_by_length: | |
| LOG.info("hang tight... sorting dataset for group_by_length") | |
| pretrain_hooks(cfg, trainer) | |
| if cfg.flash_optimum: | |
| with torch.backends.cuda.sdp_kernel( | |
| enable_flash=True, enable_math=True, enable_mem_efficient=True | |
| ): | |
| trainer.train(resume_from_checkpoint=resume_from_checkpoint) | |
| else: | |
| trainer.train(resume_from_checkpoint=resume_from_checkpoint) | |
| post_train_hooks(cfg, trainer) | |
| LOG.info(f"Training Completed!!! Saving pre-trained model to {cfg.output_dir}") | |
| # post training | |
| for name, module in model.named_modules(): | |
| if hasattr(module, "_post_training"): | |
| module._post_training(model, name) # pylint: disable=protected-access | |
| if trainer.is_fsdp_enabled: | |
| trainer.accelerator.state.fsdp_plugin.set_state_dict_type("FULL_STATE_DICT") | |
| LOG.info("Set FSDP state dict type to FULL_STATE_DICT for saving.") | |
| if cfg.relora_steps: | |
| if cfg.adapter == "lora" and not (cfg.load_in_4bit or cfg.load_in_8bit): | |
| model = model.merge_and_unload() | |
| else: | |
| # final model weights have already been saved by `ReLoRACallback.on_train_end` | |
| return model, tokenizer | |
| # TODO do we need this fix? https://huggingface.co/docs/accelerate/usage_guides/fsdp#saving-and-loading | |
| # only save on rank 0, otherwise it corrupts output on multi-GPU when multiple processes attempt to write the same file | |
| if cfg.fsdp: | |
| trainer.save_model(cfg.output_dir) | |
| elif cfg.deepspeed and is_deepspeed_zero3_enabled(): | |
| # Copied over from: https://github.com/huggingface/accelerate/blob/5ae611118057232f441055f7ef9ba0b0f2b8d533/docs/source/usage_guides/deepspeed.md#saving-and-loading | |
| trainer.accelerator.wait_for_everyone() | |
| unwrapped_model = trainer.accelerator.unwrap_model(trainer.model_wrapped) | |
| # Saves the whole/unpartitioned fp16 model when in ZeRO Stage-3 to the output directory if | |
| # `stage3_gather_16bit_weights_on_model_save` is True in DeepSpeed Config file or | |
| # `zero3_save_16bit_model` is True in DeepSpeed Plugin. | |
| # For Zero Stages 1 and 2, models are saved as usual in the output directory. | |
| # The model name saved is `pytorch_model.bin` | |
| unwrapped_model.save_pretrained( | |
| cfg.output_dir, | |
| is_main_process=trainer.accelerator.is_main_process, | |
| save_function=trainer.accelerator.save, | |
| state_dict=trainer.accelerator.get_state_dict(trainer.model_wrapped), | |
| ) | |
| elif cfg.local_rank == 0: | |
| if cfg.flash_optimum: | |
| model = BetterTransformer.reverse(model) | |
| model.save_pretrained(cfg.output_dir, safe_serialization=safe_serialization) | |
| if not cfg.hub_model_id: | |
| trainer.create_model_card(model_name=cfg.output_dir.lstrip("./")) | |
| return model, tokenizer | |
| def pretrain_hooks(_cfg, _trainer): | |
| """ | |
| Run hooks right before kicking off the training | |
| :param cfg: | |
| :param trainer: | |
| :return: | |
| """ | |
| def post_train_hooks(_cfg, _trainer): | |
| """ | |
| Run hooks right after training completes | |
| :param cfg: | |
| :param trainer: | |
| :return: | |
| """ | |