Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
|
| 4 |
+
# Define the columns for the UGI Leaderboard
|
| 5 |
+
UGI_COLS = [
|
| 6 |
+
'#P', 'Model', 'UGI 🏆', 'Willingness👍', 'QuActivities', 'Internet', 'CrimeStats', 'Stories/Jokes', 'Pol Contro'
|
| 7 |
+
]
|
| 8 |
+
|
| 9 |
+
# Load the leaderboard data from a CSV file
|
| 10 |
+
def load_leaderboard_data(csv_file_path):
|
| 11 |
+
try:
|
| 12 |
+
df = pd.read_csv(csv_file_path)
|
| 13 |
+
# Create hyperlinks in the Model column using HTML <a> tags with inline CSS for styling
|
| 14 |
+
df['Model'] = df.apply(lambda row: f'<a href="{row["Link"]}" target="_blank" style="color: blue; text-decoration: none;">{row["Model"]}</a>' if pd.notna(row["Link"]) else row["Model"], axis=1)
|
| 15 |
+
# Drop the 'Link' column as it's no longer needed
|
| 16 |
+
df.drop(columns=['Link'], inplace=True)
|
| 17 |
+
return df
|
| 18 |
+
except Exception as e:
|
| 19 |
+
print(f"Error loading CSV file: {e}")
|
| 20 |
+
return pd.DataFrame(columns=UGI_COLS) # Return an empty dataframe with the correct columns
|
| 21 |
+
|
| 22 |
+
# Update the leaderboard table based on the search query and parameter range filters
|
| 23 |
+
def update_table(df: pd.DataFrame, query: str, param_ranges: dict) -> pd.DataFrame:
|
| 24 |
+
filtered_df = df
|
| 25 |
+
if any(param_ranges.values()):
|
| 26 |
+
conditions = []
|
| 27 |
+
for param_range, checked in param_ranges.items():
|
| 28 |
+
if checked:
|
| 29 |
+
if param_range == '~1.5':
|
| 30 |
+
conditions.append((filtered_df['Params'] < 2.5))
|
| 31 |
+
elif param_range == '~3':
|
| 32 |
+
conditions.append(((filtered_df['Params'] >= 2.5) & (filtered_df['Params'] < 6)))
|
| 33 |
+
elif param_range == '~7':
|
| 34 |
+
conditions.append(((filtered_df['Params'] >= 6) & (filtered_df['Params'] < 9.5)))
|
| 35 |
+
elif param_range == '~13':
|
| 36 |
+
conditions.append(((filtered_df['Params'] >= 9.5) & (filtered_df['Params'] < 16)))
|
| 37 |
+
elif param_range == '~20':
|
| 38 |
+
conditions.append(((filtered_df['Params'] >= 16) & (filtered_df['Params'] < 28)))
|
| 39 |
+
elif param_range == '~34':
|
| 40 |
+
conditions.append(((filtered_df['Params'] >= 28) & (filtered_df['Params'] < 40)))
|
| 41 |
+
elif param_range == '~50':
|
| 42 |
+
conditions.append(((filtered_df['Params'] >= 40) & (filtered_df['Params'] < 60)))
|
| 43 |
+
elif param_range == '~70+':
|
| 44 |
+
conditions.append((filtered_df['Params'] >= 60))
|
| 45 |
+
|
| 46 |
+
if all(param_ranges.values()):
|
| 47 |
+
conditions.append(filtered_df['Params'].isna())
|
| 48 |
+
|
| 49 |
+
filtered_df = filtered_df[pd.concat(conditions, axis=1).any(axis=1)]
|
| 50 |
+
|
| 51 |
+
if query:
|
| 52 |
+
filtered_df = filtered_df[filtered_df.apply(lambda row: query.lower() in row.to_string().lower(), axis=1)]
|
| 53 |
+
|
| 54 |
+
return filtered_df[UGI_COLS] # Return only the columns defined in UGI_COLS
|
| 55 |
+
|
| 56 |
+
# Define the Gradio interface
|
| 57 |
+
demo = gr.Blocks()
|
| 58 |
+
|
| 59 |
+
with demo:
|
| 60 |
+
gr.Markdown("## UGI Leaderboard", elem_classes="text-lg")
|
| 61 |
+
with gr.Column():
|
| 62 |
+
with gr.Row():
|
| 63 |
+
search_bar = gr.Textbox(placeholder=" 🔍 Search for a model...", show_label=False)
|
| 64 |
+
with gr.Row():
|
| 65 |
+
gr.Markdown("Model sizes (in billions of parameters)", elem_classes="text-sm")
|
| 66 |
+
param_range_1 = gr.Checkbox(label="~1.5", value=False)
|
| 67 |
+
param_range_2 = gr.Checkbox(label="~3", value=False)
|
| 68 |
+
param_range_3 = gr.Checkbox(label="~7", value=False)
|
| 69 |
+
param_range_4 = gr.Checkbox(label="~13", value=False)
|
| 70 |
+
param_range_5 = gr.Checkbox(label="~20", value=False)
|
| 71 |
+
param_range_6 = gr.Checkbox(label="~34", value=False)
|
| 72 |
+
param_range_7 = gr.Checkbox(label="~50", value=False)
|
| 73 |
+
param_range_8 = gr.Checkbox(label="~70+", value=False)
|
| 74 |
+
|
| 75 |
+
# Load the initial leaderboard data
|
| 76 |
+
leaderboard_df = load_leaderboard_data("ugi-leaderboard-data.csv")
|
| 77 |
+
|
| 78 |
+
# Define the datatypes for each column, setting 'Model' column to 'html'
|
| 79 |
+
datatypes = ['html' if col == 'Model' else 'str' for col in UGI_COLS]
|
| 80 |
+
|
| 81 |
+
leaderboard_table = gr.Dataframe(
|
| 82 |
+
value=leaderboard_df[UGI_COLS],
|
| 83 |
+
datatype=datatypes, # Specify the datatype for each column
|
| 84 |
+
interactive=False, # Set to False to make the leaderboard non-editable
|
| 85 |
+
visible=True,
|
| 86 |
+
elem_classes="text-sm" # Increase the font size of the leaderboard data
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# Define the search and filter functionality
|
| 90 |
+
inputs = [
|
| 91 |
+
search_bar,
|
| 92 |
+
param_range_1,
|
| 93 |
+
param_range_2,
|
| 94 |
+
param_range_3,
|
| 95 |
+
param_range_4,
|
| 96 |
+
param_range_5,
|
| 97 |
+
param_range_6,
|
| 98 |
+
param_range_7,
|
| 99 |
+
param_range_8
|
| 100 |
+
]
|
| 101 |
+
|
| 102 |
+
outputs = leaderboard_table
|
| 103 |
+
|
| 104 |
+
search_bar.change(
|
| 105 |
+
fn=lambda query, r1, r2, r3, r4, r5, r6, r7, r8: update_table(leaderboard_df, query, {
|
| 106 |
+
'~1.5': r1,
|
| 107 |
+
'~3': r2,
|
| 108 |
+
'~7': r3,
|
| 109 |
+
'~13': r4,
|
| 110 |
+
'~20': r5,
|
| 111 |
+
'~34': r6,
|
| 112 |
+
'~50': r7,
|
| 113 |
+
'~70+': r8
|
| 114 |
+
}),
|
| 115 |
+
inputs=inputs,
|
| 116 |
+
outputs=outputs
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
for param_range in inputs[1:]:
|
| 120 |
+
param_range.change(
|
| 121 |
+
fn=lambda query, r1, r2, r3, r4, r5, r6, r7, r8: update_table(leaderboard_df, query, {
|
| 122 |
+
'~1.5': r1,
|
| 123 |
+
'~3': r2,
|
| 124 |
+
'~7': r3,
|
| 125 |
+
'~13': r4,
|
| 126 |
+
'~20': r5,
|
| 127 |
+
'~34': r6,
|
| 128 |
+
'~50': r7,
|
| 129 |
+
'~70+': r8
|
| 130 |
+
}),
|
| 131 |
+
inputs=inputs,
|
| 132 |
+
outputs=outputs
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Launch the Gradio app
|
| 136 |
+
demo.launch()
|