import os import yaml import torch import nibabel as nib import numpy as np import gradio as gr from typing import Tuple import tempfile import shutil import matplotlib.pyplot as plt import matplotlib matplotlib.use('Agg') # Use non-interactive backend import cv2 # For Gaussian Blur import io # For saving plots to memory import base64 # For encoding plots import uuid # For unique IDs import traceback # For detailed error printing import SimpleITK as sitk import itk from scipy.signal import medfilt import skimage.filters from monai.transforms import Compose, LoadImaged, EnsureChannelFirstd, Resized, NormalizeIntensityd, ToTensord from model import ViTBackboneNet, Classifier, SingleScanModelBP # Optional HD-BET import (packaged locally like in MCI app) try: from HD_BET.run import run_hd_bet from HD_BET.hd_bet import hd_bet except Exception as e: print(f"Warning: HD_BET not available: {e}") run_hd_bet = None hd_bet = None APP_DIR = os.path.dirname(__file__) TEMPLATE_DIR = os.path.join(APP_DIR, "golden_image", "mni_templates") PARAMS_RIGID_PATH = os.path.join(TEMPLATE_DIR, "Parameters_Rigid.txt") DEFAULT_TEMPLATE_PATH = os.path.join(TEMPLATE_DIR, "temp_head.nii.gz") FLAIR_TEMPLATE_PATH = os.path.join(TEMPLATE_DIR, "nihpd_asym_04.5-18.5_t2w.nii") T1C_TEMPLATE_PATH = os.path.join(TEMPLATE_DIR, "nihpd_asym_13.0-18.5_t1w.nii") HD_BET_CONFIG_PATH = os.path.join(APP_DIR, "HD_BET", "config.py") HD_BET_MODEL_DIR = os.path.join(APP_DIR, "hdbet_model") def load_config() -> dict: cfg_path = os.path.join(APP_DIR, "config.yml") if os.path.exists(cfg_path): with open(cfg_path, "r") as f: return yaml.safe_load(f) # Defaults return { "gpu": {"device": "cpu"}, "infer": { "checkpoints": "./checkpoints/idh_model.ckpt", "simclr_checkpoint": "./checkpoints/simclr_vitb.ckpt", "threshold": 0.5, "image_size": [96, 96, 96], }, } def build_model(cfg: dict): device = torch.device(cfg.get("gpu", {}).get("device", "cpu")) infer_cfg = cfg.get("infer", {}) simclr_path = os.path.join(APP_DIR, infer_cfg.get("simclr_checkpoint", "")) ckpt_path = os.path.join(APP_DIR, infer_cfg.get("checkpoints", "")) backbone = ViTBackboneNet(simclr_ckpt_path=simclr_path) classifier = Classifier(d_model=768, num_classes=1) model = SingleScanModelBP(backbone, classifier) # Load finetuned checkpoint (Lightning or plain state_dict) if os.path.exists(ckpt_path): checkpoint = torch.load(ckpt_path, map_location="cpu", weights_only=False) if "state_dict" in checkpoint: state_dict = checkpoint["state_dict"] new_state_dict = {} for key, value in state_dict.items(): if key.startswith("model."): new_state_dict[key[len("model."):]] = value else: new_state_dict[key] = value else: new_state_dict = checkpoint model.load_state_dict(new_state_dict, strict=False) else: print(f"Warning: Finetuned checkpoint not found at {ckpt_path}. Model will use backbone-only weights.") model.to(device) model.eval() return model, device # ---------------- Preprocessing (Registration + Enhancement + Skull Stripping) ---------------- def bias_field_correction(img_array: np.ndarray) -> np.ndarray: image = sitk.GetImageFromArray(img_array.astype(np.float32)) if image.GetPixelID() != sitk.sitkFloat32: image = sitk.Cast(image, sitk.sitkFloat32) maskImage = sitk.OtsuThreshold(image, 0, 1, 200) corrector = sitk.N4BiasFieldCorrectionImageFilter() numberFittingLevels = 4 max_iters = [min(50 * (2 ** i), 200) for i in range(numberFittingLevels)] corrector.SetMaximumNumberOfIterations(max_iters) corrected_image = corrector.Execute(image, maskImage) return sitk.GetArrayFromImage(corrected_image) def denoise(volume: np.ndarray, kernel_size: int = 3) -> np.ndarray: return medfilt(volume, kernel_size) def rescale_intensity(volume: np.ndarray, percentils=[0.5, 99.5], bins_num=256) -> np.ndarray: volume_float = volume.astype(np.float32) try: t = skimage.filters.threshold_otsu(volume_float, nbins=256) volume_masked = np.copy(volume_float) volume_masked[volume_masked < t] = 0 obj_volume = volume_masked[np.where(volume_masked > 0)] except ValueError: obj_volume = volume_float.flatten() if obj_volume.size == 0: obj_volume = volume_float.flatten() min_value = np.min(obj_volume) max_value = np.max(obj_volume) else: min_value = np.percentile(obj_volume, percentils[0]) max_value = np.percentile(obj_volume, percentils[1]) denom = max_value - min_value if denom < 1e-6: denom = 1e-6 if bins_num == 0: output_volume = (volume_float - min_value) / denom output_volume = np.clip(output_volume, 0.0, 1.0) else: output_volume = np.round((volume_float - min_value) / denom * (bins_num - 1)) output_volume = np.clip(output_volume, 0, bins_num - 1) return output_volume.astype(np.float32) def equalize_hist(volume: np.ndarray, bins_num=256) -> np.ndarray: mask = volume > 1e-6 obj_volume = volume[mask] if obj_volume.size == 0: return volume hist, bins = np.histogram(obj_volume, bins_num, range=(obj_volume.min(), obj_volume.max())) cdf = hist.cumsum() cdf_normalized = (bins_num - 1) * cdf / float(cdf[-1]) equalized_obj_volume = np.interp(obj_volume, bins[:-1], cdf_normalized) equalized_volume = np.copy(volume) equalized_volume[mask] = equalized_obj_volume return equalized_volume.astype(np.float32) def run_enhance_on_file(input_nifti_path: str, output_nifti_path: str): """ Simplified enhancement - just copy the file since N4 is now done in registration. This maintains compatibility with the existing preprocessing pipeline. """ print(f"Enhancement step (N4 already applied during registration): {input_nifti_path}") # Since N4 bias correction is now handled in registration, just copy the file import shutil shutil.copy2(input_nifti_path, output_nifti_path) print(f"Enhancement complete (passthrough): {output_nifti_path}") def register_image_sitk(input_nifti_path: str, output_nifti_path: str, template_path: str, interp_type='linear'): """ MRI registration with SimpleITK matching the provided script approach. Args: input_nifti_path: Path to input NIfTI file output_nifti_path: Path to save registered output template_path: Path to template image interp_type: Interpolation type ('linear', 'bspline', 'nearest_neighbor') """ print(f"Registering {input_nifti_path} to template {template_path}") # Read template and moving images fixed_img = sitk.ReadImage(template_path, sitk.sitkFloat32) moving_img = sitk.ReadImage(input_nifti_path, sitk.sitkFloat32) # Apply N4 bias correction to moving image moving_img = sitk.N4BiasFieldCorrection(moving_img) # Resample fixed image to 1mm isotropic old_size = fixed_img.GetSize() old_spacing = fixed_img.GetSpacing() new_spacing = (1, 1, 1) new_size = [ int(round((old_size[0] * old_spacing[0]) / float(new_spacing[0]))), int(round((old_size[1] * old_spacing[1]) / float(new_spacing[1]))), int(round((old_size[2] * old_spacing[2]) / float(new_spacing[2]))) ] # Set interpolation type if interp_type == 'linear': interp_type = sitk.sitkLinear elif interp_type == 'bspline': interp_type = sitk.sitkBSpline elif interp_type == 'nearest_neighbor': interp_type = sitk.sitkNearestNeighbor else: interp_type = sitk.sitkLinear # Resample fixed image resample = sitk.ResampleImageFilter() resample.SetOutputSpacing(new_spacing) resample.SetSize(new_size) resample.SetOutputOrigin(fixed_img.GetOrigin()) resample.SetOutputDirection(fixed_img.GetDirection()) resample.SetInterpolator(interp_type) resample.SetDefaultPixelValue(fixed_img.GetPixelIDValue()) resample.SetOutputPixelType(sitk.sitkFloat32) fixed_img = resample.Execute(fixed_img) # Initialize transform transform = sitk.CenteredTransformInitializer( fixed_img, moving_img, sitk.Euler3DTransform(), sitk.CenteredTransformInitializerFilter.GEOMETRY) # Set up registration method registration_method = sitk.ImageRegistrationMethod() registration_method.SetMetricAsMattesMutualInformation(numberOfHistogramBins=50) registration_method.SetMetricSamplingStrategy(registration_method.RANDOM) registration_method.SetMetricSamplingPercentage(0.01) registration_method.SetInterpolator(sitk.sitkLinear) registration_method.SetOptimizerAsGradientDescent( learningRate=1.0, numberOfIterations=100, convergenceMinimumValue=1e-6, convergenceWindowSize=10) registration_method.SetOptimizerScalesFromPhysicalShift() registration_method.SetShrinkFactorsPerLevel(shrinkFactors=[4, 2, 1]) registration_method.SetSmoothingSigmasPerLevel(smoothingSigmas=[2, 1, 0]) registration_method.SmoothingSigmasAreSpecifiedInPhysicalUnitsOn() registration_method.SetInitialTransform(transform) # Execute registration final_transform = registration_method.Execute(fixed_img, moving_img) # Apply transform and save registered image moving_img_resampled = sitk.Resample( moving_img, fixed_img, final_transform, sitk.sitkLinear, 0.0, moving_img.GetPixelID()) sitk.WriteImage(moving_img_resampled, output_nifti_path) print(f"Registration complete. Saved to: {output_nifti_path}") def register_image(input_nifti_path: str, output_nifti_path: str): """Wrapper to maintain compatibility - now uses SimpleITK registration.""" if not os.path.exists(DEFAULT_TEMPLATE_PATH): raise FileNotFoundError(f"Template file missing: {DEFAULT_TEMPLATE_PATH}") register_image_sitk(input_nifti_path, output_nifti_path, DEFAULT_TEMPLATE_PATH) def run_skull_stripping(input_nifti_path: str, output_dir: str): """ Brain extraction using HD-BET direct integration matching the script approach. Args: input_nifti_path: Path to input NIfTI file output_dir: Directory to save skull-stripped output Returns: tuple: (output_file_path, output_mask_path) """ print(f"Running HD-BET skull stripping on {input_nifti_path}") if hd_bet is None: raise RuntimeError("HD-BET not available. Please include HD_BET and hdbet_model in src/IDH.") if not os.path.exists(HD_BET_MODEL_DIR): raise FileNotFoundError(f"HD-BET models not found at {HD_BET_MODEL_DIR}") os.makedirs(output_dir, exist_ok=True) # Get base filename and prepare HD-BET compatible naming base_name = os.path.basename(input_nifti_path).replace('.nii.gz', '').replace('.nii', '') # HD-BET expects files with _0000 suffix - create temporary file if needed temp_input_dir = os.path.join(output_dir, "temp_input") os.makedirs(temp_input_dir, exist_ok=True) # Copy input file with _0000 suffix for HD-BET temp_input_path = os.path.join(temp_input_dir, f"{base_name}_0000.nii.gz") shutil.copy2(input_nifti_path, temp_input_path) # Set device device = "0" if torch.cuda.is_available() else "cpu" try: # Also try setting the specific model file path model_file = os.path.join(HD_BET_MODEL_DIR, '0.model') if os.path.exists(model_file): print(f"Local model file exists at: {model_file}") else: print(f"Warning: Model file not found at: {model_file}") # List directory contents for debugging if os.path.exists(HD_BET_MODEL_DIR): print(f"Contents of {HD_BET_MODEL_DIR}: {os.listdir(HD_BET_MODEL_DIR)}") else: print(f"Directory {HD_BET_MODEL_DIR} does not exist") # Run HD-BET directly on the temporary directory print(f"Running hd_bet with input_dir: {temp_input_dir}, output_dir: {output_dir}") hd_bet(temp_input_dir, output_dir, device=device, mode='fast', tta=0) # HD-BET outputs files with original naming convention output_file_path = os.path.join(output_dir, f"{base_name}_0000.nii.gz") output_mask_path = os.path.join(output_dir, f"{base_name}_0000_mask.nii.gz") # Rename to expected format for compatibility final_output_path = os.path.join(output_dir, f"{base_name}_bet.nii.gz") final_mask_path = os.path.join(output_dir, f"{base_name}_bet_mask.nii.gz") if os.path.exists(output_file_path): shutil.move(output_file_path, final_output_path) if os.path.exists(output_mask_path): shutil.move(output_mask_path, final_mask_path) # Clean up temporary directory shutil.rmtree(temp_input_dir, ignore_errors=True) if not os.path.exists(final_output_path): raise RuntimeError(f"HD-BET did not produce output file: {final_output_path}") print(f"Skull stripping complete. Output saved to: {final_output_path}") return final_output_path, final_mask_path except Exception as e: # Clean up on error shutil.rmtree(temp_input_dir, ignore_errors=True) raise RuntimeError(f"HD-BET skull stripping failed: {str(e)}") # ---------------- Saliency Generation ---------------- def extract_attention_map(vit_model, image, layer_idx=-1, img_size=(96, 96, 96), patch_size=16): """ Extracts the attention map from a Vision Transformer (ViT) model. This function wraps the attention blocks of the ViT to capture the attention weights during a forward pass. It then processes these weights to generate a 3D saliency map corresponding to the model's focus on the input image. """ attention_maps = {} original_attns = {} # A wrapper class to intercept and store attention weights from a ViT block. class AttentionWithWeights(torch.nn.Module): def __init__(self, original_attn_module): super().__init__() self.original_attn_module = original_attn_module self.attn_weights = None def forward(self, x): # The original implementation of the attention module may not return # the attention weights. This wrapper recalculates them to ensure they # are captured. This is based on the standard ViT attention mechanism. output = self.original_attn_module(x) if hasattr(self.original_attn_module, 'qkv'): qkv = self.original_attn_module.qkv(x) batch_size, seq_len, _ = x.shape # Assuming qkv has been fused and has shape (batch_size, seq_len, 3 * num_heads * head_dim) qkv = qkv.reshape(batch_size, seq_len, 3, self.original_attn_module.num_heads, -1) qkv = qkv.permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] attn = (q @ k.transpose(-2, -1)) * self.original_attn_module.scale self.attn_weights = attn.softmax(dim=-1) return output # Store original attention modules and replace with wrappers for i, block in enumerate(vit_model.blocks): if hasattr(block, 'attn'): original_attns[i] = block.attn block.attn = AttentionWithWeights(block.attn) try: # Perform a forward pass to execute the wrapped modules and capture weights with torch.no_grad(): _ = vit_model(image) # Collect the captured attention weights from each block for i, block in enumerate(vit_model.blocks): if hasattr(block.attn, 'attn_weights') and block.attn.attn_weights is not None: attention_maps[f"layer_{i}"] = block.attn.attn_weights.detach() finally: # Restore original attention modules for i, original_attn in original_attns.items(): vit_model.blocks[i].attn = original_attn if not attention_maps: raise RuntimeError("Could not extract any attention maps. Please check the ViT model structure.") # Select the attention map from the specified layer if layer_idx < 0: layer_idx = len(attention_maps) + layer_idx layer_name = f"layer_{layer_idx}" if layer_name not in attention_maps: raise ValueError(f"Layer {layer_idx} not found. Available layers: {list(attention_maps.keys())}") layer_attn = attention_maps[layer_name] # Average attention across all heads head_attn = layer_attn[0].mean(dim=0) # Get attention from the [CLS] token to all other image patches cls_attn = head_attn[0, 1:] # Reshape the 1D attention vector into a 3D volume patches_per_dim = img_size[0] // patch_size total_patches = patches_per_dim ** 3 # Pad or truncate if the number of patches doesn't align if cls_attn.shape[0] != total_patches: if cls_attn.shape[0] > total_patches: cls_attn = cls_attn[:total_patches] else: padded = torch.zeros(total_patches, device=cls_attn.device) padded[:cls_attn.shape[0]] = cls_attn cls_attn = padded cls_attn_3d = cls_attn.reshape(patches_per_dim, patches_per_dim, patches_per_dim) cls_attn_3d = cls_attn_3d.unsqueeze(0).unsqueeze(0) # Add batch and channel dims # Upsample the attention map to the full image resolution upsampled_attn = torch.nn.functional.interpolate( cls_attn_3d, size=img_size, mode='trilinear', align_corners=False ).squeeze() # Normalize the map to [0, 1] for visualization upsampled_attn = upsampled_attn.cpu().numpy() upsampled_attn = (upsampled_attn - upsampled_attn.min()) / (upsampled_attn.max() - upsampled_attn.min()) return upsampled_attn def generate_saliency_dual(model, input_tensor, layer_idx=-1): """ Generate saliency maps for dual-input IDH model. Args: model: The complete IDH model input_tensor: Dual input tensor (batch_size, 2, C, D, H, W) layer_idx: ViT layer to visualize Returns: tuple: (flair_input_3d, t1c_input_3d, flair_saliency_3d) """ print("Generating saliency maps for dual input...") try: # Extract individual images from dual input # input_tensor shape: [batch_size, 2, C, D, H, W] flair_tensor = input_tensor[:, 0] # [batch, C, D, H, W] t1c_tensor = input_tensor[:, 1] # [batch, C, D, H, W] # Get the ViT backbone vit_model = model.backbone.backbone # Generate attention map only for FLAIR flair_attn = extract_attention_map(vit_model, flair_tensor, layer_idx) # Convert input tensors to numpy for visualization flair_input_3d = flair_tensor.squeeze().cpu().detach().numpy() t1c_input_3d = t1c_tensor.squeeze().cpu().detach().numpy() print("Saliency maps generated successfully.") return flair_input_3d, t1c_input_3d, flair_attn except Exception as e: print(f"Error during saliency generation: {e}") traceback.print_exc() return None, None, None # ---------------- Visualization Functions ---------------- def create_slice_plots_dual(flair_data_3d, t1c_data_3d, flair_saliency_3d, slice_index): """Create slice plots for simplified dual input visualization: T1c, FLAIR, FLAIR attention.""" print(f"Generating plots for slice index: {slice_index}") if any(data is None for data in [flair_data_3d, t1c_data_3d, flair_saliency_3d]): return None, None, None # Check bounds - using axis 2 for axial slices if not (0 <= slice_index < flair_data_3d.shape[2]): print(f"Error: Slice index {slice_index} out of bounds (0-{flair_data_3d.shape[2]-1}).") return None, None, None def save_plot_to_numpy(fig): with io.BytesIO() as buf: fig.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, dpi=75) plt.close(fig) buf.seek(0) img_arr = plt.imread(buf, format='png') return (img_arr * 255).astype(np.uint8) try: # Extract axial slices - using axis 2 (last dimension) flair_slice = flair_data_3d[:, :, slice_index] t1c_slice = t1c_data_3d[:, :, slice_index] flair_saliency_slice = flair_saliency_3d[:, :, slice_index] # Normalize input slices def normalize_slice(slice_data, volume_data): p1, p99 = np.percentile(volume_data, (1, 99)) denom = max(p99 - p1, 1e-6) return np.clip((slice_data - p1) / denom, 0, 1) flair_slice_norm = normalize_slice(flair_slice, flair_data_3d) t1c_slice_norm = normalize_slice(t1c_slice, t1c_data_3d) # Process saliency slice def process_saliency_slice(saliency_slice, saliency_volume): saliency_slice = np.copy(saliency_slice) saliency_slice[saliency_slice < 0] = 0 saliency_slice_blurred = cv2.GaussianBlur(saliency_slice, (15, 15), 0) s_max = max(np.max(saliency_volume[saliency_volume >= 0]), 1e-6) saliency_slice_norm = saliency_slice_blurred / s_max return np.where(saliency_slice_norm > 0.0, saliency_slice_norm, 0) flair_sal_processed = process_saliency_slice(flair_saliency_slice, flair_saliency_3d) # Create plots plots = [] # T1c Input fig1, ax1 = plt.subplots(figsize=(6, 6)) ax1.imshow(t1c_slice_norm, cmap='gray', interpolation='none', origin='lower') ax1.axis('off') ax1.set_title('T1c Input', fontsize=14, color='white', pad=10) plots.append(save_plot_to_numpy(fig1)) # FLAIR Input fig2, ax2 = plt.subplots(figsize=(6, 6)) ax2.imshow(flair_slice_norm, cmap='gray', interpolation='none', origin='lower') ax2.axis('off') ax2.set_title('FLAIR Input', fontsize=14, color='white', pad=10) plots.append(save_plot_to_numpy(fig2)) # FLAIR Attention fig3, ax3 = plt.subplots(figsize=(6, 6)) ax3.imshow(flair_sal_processed, cmap='magma', interpolation='none', origin='lower', vmin=0) ax3.axis('off') ax3.set_title('FLAIR Attention', fontsize=14, color='white', pad=10) plots.append(save_plot_to_numpy(fig3)) print(f"Generated 3 plots successfully for axial slice {slice_index}.") return tuple(plots) except Exception as e: print(f"Error generating plots for slice {slice_index}: {e}") traceback.print_exc() return tuple([None] * 3) # ---------------- Inference ---------------- def get_dual_validation_transform(image_size: Tuple[int, int, int]): return Compose([ LoadImaged(keys=["image1", "image2"]), EnsureChannelFirstd(keys=["image1", "image2"]), Resized(keys=["image1", "image2"], spatial_size=tuple(image_size), mode="trilinear"), NormalizeIntensityd(keys=["image1", "image2"], nonzero=True, channel_wise=True), ToTensord(keys=["image1", "image2"]), ]) def preprocess_dual_nifti(flair_path: str, t1c_path: str, image_size: Tuple[int, int, int], device: torch.device) -> torch.Tensor: transform = get_dual_validation_transform(image_size) sample = {"image1": flair_path, "image2": t1c_path} sample = transform(sample) img1 = sample["image1"] # (C, D, H, W) img2 = sample["image2"] # (C, D, H, W) images = torch.stack([img1, img2], dim=0).unsqueeze(0).to(device) return images def predict_idh(flair_file, t1c_file, threshold: float, do_preprocess: bool, generate_saliency: bool, cfg: dict, model, device): try: if flair_file is None or t1c_file is None: return {"error": "Please upload both FLAIR and T1c NIfTI files (.nii.gz)."}, None, None, None, gr.Slider(visible=False), {"input_paths": None, "saliency_paths": None, "num_slices": 0} flair_path = flair_file.name if hasattr(flair_file, 'name') else flair_file t1c_path = t1c_file.name if hasattr(t1c_file, 'name') else t1c_file if not (flair_path.endswith(".nii") or flair_path.endswith(".nii.gz")): return {"error": "FLAIR must be a NIfTI file (.nii or .nii.gz)."}, None, None, None, gr.Slider(visible=False), {"input_paths": None, "saliency_paths": None, "num_slices": 0} if not (t1c_path.endswith(".nii") or t1c_path.endswith(".nii.gz")): return {"error": "T1c must be a NIfTI file (.nii or .nii.gz)."}, None, None, None, gr.Slider(visible=False), {"input_paths": None, "saliency_paths": None, "num_slices": 0} work_dir = tempfile.mkdtemp() flair_final_path, t1c_final_path = flair_path, t1c_path try: # Optional preprocessing pipeline if do_preprocess: # Registration (use modality-specific templates) flair_reg = os.path.join(work_dir, "flair_registered.nii.gz") t1c_reg = os.path.join(work_dir, "t1c_registered.nii.gz") register_image_sitk(flair_path, flair_reg, FLAIR_TEMPLATE_PATH) register_image_sitk(t1c_path, t1c_reg, T1C_TEMPLATE_PATH) # Enhancement flair_enh = os.path.join(work_dir, "flair_enhanced.nii.gz") t1c_enh = os.path.join(work_dir, "t1c_enhanced.nii.gz") run_enhance_on_file(flair_reg, flair_enh) run_enhance_on_file(t1c_reg, t1c_enh) # Skull stripping skullstrip_dir = os.path.join(work_dir, "skullstripped") flair_bet, _ = run_skull_stripping(flair_enh, skullstrip_dir) t1c_bet, _ = run_skull_stripping(t1c_enh, skullstrip_dir) flair_final_path, t1c_final_path = flair_bet, t1c_bet # Prediction image_size = cfg.get("infer", {}).get("image_size", [96, 96, 96]) input_tensor = preprocess_dual_nifti(flair_final_path, t1c_final_path, image_size, device) with torch.no_grad(): logits = model(input_tensor) prob = torch.sigmoid(logits).cpu().numpy().flatten()[0].item() predicted_class = int(prob >= threshold) prediction_result = { "IDH_mutant_probability": float(prob), "threshold": float(threshold), "predicted_class": int(predicted_class), "preprocessing": bool(do_preprocess), "class_label": "IDH-mutant" if predicted_class == 1 else "IDH-wildtype" } # Initialize saliency outputs t1c_input_img = flair_input_img = flair_attn_img = None slider_update = gr.Slider(visible=False) saliency_state = {"input_paths": None, "saliency_paths": None, "num_slices": 0} # Generate saliency maps if requested if generate_saliency: print("--- Generating Saliency Maps ---") try: flair_input_3d, t1c_input_3d, flair_saliency_3d = generate_saliency_dual(model, input_tensor, layer_idx=-1) if all(data is not None for data in [flair_input_3d, t1c_input_3d, flair_saliency_3d]): num_slices = flair_input_3d.shape[2] # Use axis 2 for axial slices center_slice_index = num_slices // 2 # Save numpy arrays for slider callback unique_id = str(uuid.uuid4()) temp_paths = [] for name, data in [("flair_input", flair_input_3d), ("t1c_input", t1c_input_3d), ("flair_saliency", flair_saliency_3d)]: path = os.path.join(work_dir, f"{unique_id}_{name}.npy") np.save(path, data) temp_paths.append(path) # Generate initial plots for center slice plots = create_slice_plots_dual(flair_input_3d, t1c_input_3d, flair_saliency_3d, center_slice_index) if plots and all(p is not None for p in plots): t1c_input_img, flair_input_img, flair_attn_img = plots # Update state and slider saliency_state = { "input_paths": temp_paths[:2], # [flair_input, t1c_input] "saliency_paths": temp_paths[2:], # [flair_saliency] "num_slices": num_slices } slider_update = gr.Slider(value=center_slice_index, minimum=0, maximum=num_slices-1, step=1, label="Select Slice", visible=True) print("--- Saliency Generation Complete ---") else: print("Warning: Saliency generation failed - some outputs were None") except Exception as e: print(f"Error during saliency generation: {e}") traceback.print_exc() return (prediction_result, t1c_input_img, flair_input_img, flair_attn_img, slider_update, saliency_state) except Exception as e: shutil.rmtree(work_dir, ignore_errors=True) return {"error": f"Processing failed: {str(e)}"}, None, None, None, gr.Slider(visible=False), {"input_paths": None, "saliency_paths": None, "num_slices": 0} except Exception as e: return {"error": str(e)}, None, None, None, gr.Slider(visible=False), {"input_paths": None, "saliency_paths": None, "num_slices": 0} def update_slice_viewer_dual(slice_index, current_state): """Update slice viewer for dual input saliency visualization.""" input_paths = current_state.get("input_paths", []) saliency_paths = current_state.get("saliency_paths", []) if not input_paths or not saliency_paths or len(input_paths) != 2 or len(saliency_paths) != 1: print(f"Warning: Invalid state for slice viewer update: {current_state}") return None, None, None try: # Load numpy arrays flair_input_3d = np.load(input_paths[0]) t1c_input_3d = np.load(input_paths[1]) flair_saliency_3d = np.load(saliency_paths[0]) # Validate slice index slice_index = int(slice_index) if not (0 <= slice_index < flair_input_3d.shape[2]): # Use axis 2 for axial slices print(f"Warning: Invalid slice index {slice_index}") return None, None, None # Generate new plots plots = create_slice_plots_dual(flair_input_3d, t1c_input_3d, flair_saliency_3d, slice_index) return plots if plots else tuple([None] * 3) except Exception as e: print(f"Error updating slice viewer for index {slice_index}: {e}") traceback.print_exc() return tuple([None] * 3) def build_interface(): cfg = load_config() model, device = build_model(cfg) default_threshold = float(cfg.get("infer", {}).get("threshold", 0.5)) with gr.Blocks(title="BrainIAC: IDH Classification", css=""" #header-row { min-height: 150px; align-items: center; } .logo-img img { height: 150px; object-fit: contain; } """) as demo: # --- Header with Logos --- with gr.Row(elem_id="header-row"): with gr.Column(scale=1): gr.Image(os.path.join(APP_DIR, "static/images/kannlab.png"), show_label=False, interactive=False, show_download_button=False, container=False, elem_classes=["logo-img"]) with gr.Column(scale=3): gr.Markdown( "

" "BrainIAC: IDH Classification" "

" ) with gr.Column(scale=1): gr.Image(os.path.join(APP_DIR, "static/images/brainiac.jpeg"), show_label=False, interactive=False, show_download_button=False, container=False, elem_classes=["logo-img"]) # --- Add model description section --- with gr.Accordion("ℹ️ Model Details and Usage Guide", open=False): gr.Markdown(""" ### 🧠 BrainIAC: IDH Classification **Model Description** A Vision Transformer (ViT) model with BrainIAC as pre-trained backbone designed to predict IDH mutation status from dual MRI sequences (FLAIR + T1c). **Training Dataset** - **Subjects**: Trained on FLAIR and T1c MRI scans from glioma patients from UCSF-PDGM dataset - **Imaging Modalities**: FLAIR and T1c (contrast-enhanced T1-weighted) - **Preprocessing**: N4 bias correction, MNI registration, and skull stripping (HD-BET) **Input** - Format: NIfTI (.nii or .nii.gz) - Required sequences: FLAIR and T1c (both required) - Image size: Automatically resized to 96×96×96 voxels **Output** - Binary classification: IDH-mutant or IDH-wildtype - Probability score for IDH mutation - Attention map visualization **Intended Use** - Research use only! **NOTE** - Requires both FLAIR and T1c sequences - Not validated on other MRI sequences - Not validated for other brain pathologies beyond gliomas - Upload PHI data at own risk! - The model is hosted on a cloud-based CPU instance - The data is not stored, shared or collected for any purpose! **Preprocessing Pipeline** When enabled, the preprocessing performs: 1. **Registration**: SimpleITK-based registration to template space with mutual information metric and 1mm isotropic resampling 2. **N4 Bias Correction**: Applied during registration step 3. **Skull Stripping**: Remove non-brain tissue using HD-BET direct integration **Attention Maps** When enabled, generates ViT attention maps showing which brain regions the model focuses on for prediction. """) # Use gr.State to store paths to numpy arrays for the slider callback saliency_state = gr.State({"input_paths": None, "saliency_paths": None, "num_slices": 0}) # Main Content gr.Markdown("**Upload FLAIR and T1c NIfTI volumes** — Optional preprocessing performs registration to MNI, enhancement, and skull stripping.") with gr.Row(): with gr.Column(scale=1): with gr.Group(): gr.Markdown("### Controls") flair_input = gr.File(label="FLAIR (.nii or .nii.gz)") t1c_input = gr.File(label="T1c (.nii or .nii.gz)") preprocess_checkbox = gr.Checkbox(value=False, label="Preprocess NIfTI (registration + enhancement + skull stripping)") generate_saliency_checkbox = gr.Checkbox(value=True, label="Generate Attention Maps") threshold_input = gr.Slider(minimum=0.0, maximum=1.0, value=default_threshold, step=0.01, label="Decision Threshold") predict_btn = gr.Button("Predict IDH Status", variant="primary") with gr.Column(scale=2): with gr.Group(): gr.Markdown("### Classification Result") output_json = gr.JSON(label="Prediction") # Saliency visualization section with gr.Group(): gr.Markdown("### Attention Map Viewer (Axial Slice)") slice_slider = gr.Slider(label="Select Slice", minimum=0, maximum=0, step=1, value=0, visible=False) with gr.Row(): with gr.Column(): gr.Markdown("

T1c Input

") t1c_input_img = gr.Image(label="T1c Input", type="numpy", show_label=False) with gr.Column(): gr.Markdown("

FLAIR Input

") flair_input_img = gr.Image(label="FLAIR Input", type="numpy", show_label=False) with gr.Column(): gr.Markdown("

FLAIR Attention

") flair_attn_img = gr.Image(label="Attention Mask", type="numpy", show_label=False) # Wire components predict_btn.click( fn=lambda f, t, prep, gen_sal, thr: predict_idh(f, t, thr, prep, gen_sal, cfg, model, device), inputs=[flair_input, t1c_input, preprocess_checkbox, generate_saliency_checkbox, threshold_input], outputs=[output_json, t1c_input_img, flair_input_img, flair_attn_img, slice_slider, saliency_state], ) slice_slider.change( fn=update_slice_viewer_dual, inputs=[slice_slider, saliency_state], outputs=[t1c_input_img, flair_input_img, flair_attn_img] ) return demo if __name__ == "__main__": iface = build_interface() iface.launch(server_name="0.0.0.0", server_port=7860)