import os import torch import nibabel as nib import gradio as gr import tempfile import yaml import traceback # For detailed error printing import zipfile import dicom2nifti import shutil import subprocess # To run unzip command import SimpleITK as sitk import itk import numpy as np from scipy.signal import medfilt import skimage.filters import cv2 # For Gaussian Blur import io # For saving plots to memory import base64 # For encoding plots import uuid # For unique IDs import matplotlib.pyplot as plt import matplotlib matplotlib.use('Agg') # Use non-interactive backend # --- Custom CSS to hide buttons in logo columns --- # REVERTING CSS CHANGES AS THEY HID THE LOGOS # custom_css = """ # .logo-column button { # /* display: none !important; */ /* This seemed to hide the whole component */ # visibility: hidden !important; /* Try making it invisible instead */ # } # """ # --- Potential Import Issues (Check Paths in Docker/Local) --- try: # Assumes HD_BET is now at /app/BrainIAC/HD_BET or adjacent in src from HD_BET.run import run_hd_bet from monai.visualize.gradient_based import GuidedBackpropSmoothGrad except ImportError as e: print(f"Warning: Could not import HD_BET or MONAI visualize: {e}. Saliency/Preprocessing might fail.") run_hd_bet = None GuidedBackpropSmoothGrad = None # Import necessary components from your existing modules from model import Backbone, SingleScanModel, Classifier from monai.transforms import Resized, ScaleIntensityd # --- Constants --- APP_DIR = os.path.dirname(__file__) TEMPLATE_DIR = os.path.join(APP_DIR, "golden_image", "mni_templates") PARAMS_RIGID_PATH = os.path.join(APP_DIR, "golden_image", "mni_templates", "Parameters_Rigid.txt") DEFAULT_TEMPLATE_PATH = os.path.join(TEMPLATE_DIR, "nihpd_asym_13.0-18.5_t1w.nii") HD_BET_CONFIG_PATH = os.path.join(APP_DIR, "HD_BET", "config.py") # May need adjustment based on actual HD_BET location HD_BET_MODEL_DIR = os.path.join(APP_DIR, "hdbet_model") # Path to copied models # --- Configuration Loading --- def load_config(): config_path = os.path.join(APP_DIR, 'config.yml') try: with open(config_path, 'r') as file: config = yaml.safe_load(file) if 'data' not in config: config['data'] = {} if 'image_size' not in config['data']: config['data']['image_size'] = [128, 128, 128] except FileNotFoundError: print(f"Warning: Configuration file not found at {config_path}. Using defaults.") config = { 'gpu': {'device': 'cpu'}, 'infer': {'checkpoints': 'checkpoints/mci_model.pt'}, # Updated for new MCI model filename 'data': {'image_size': [128, 128, 128]} } return config config = load_config() DEFAULT_IMAGE_SIZE = (128, 128, 128) image_size_cfg = config.get('data', {}).get('image_size', DEFAULT_IMAGE_SIZE) if not isinstance(image_size_cfg, (list, tuple)) or len(image_size_cfg) != 3: print(f"Warning: Invalid image_size in config ({image_size_cfg}). Using default {DEFAULT_IMAGE_SIZE}.") image_size = DEFAULT_IMAGE_SIZE else: image_size = tuple(image_size_cfg) # --- Model Loading --- def load_model(cfg): device = torch.device(cfg.get('gpu', {}).get('device', 'cpu')) backbone = Backbone() classifier = Classifier(d_model=2048, num_classes=1) # Binary classification for MCI model = SingleScanModel(backbone, classifier) # Using BP model for MCI classification relative_path = cfg.get('infer', {}).get('checkpoints', 'checkpoints/mci_model.pt') checkpoint_path_abs = os.path.join(APP_DIR, relative_path) try: print(f"Loading MCI classification model from: {checkpoint_path_abs}") checkpoint = torch.load(checkpoint_path_abs, map_location=device, weights_only=False) state_dict = checkpoint.get('model_state_dict', checkpoint) model.load_state_dict(state_dict, strict=False) model.to(device) model.eval() print(f"MCI classification model loaded successfully onto {device}") return model, device except FileNotFoundError: print(f"Error: Checkpoint file not found at {checkpoint_path_abs}") return None, device except Exception as e: print(f"Error loading model checkpoint: {e}") traceback.print_exc() return None, device model, device = load_model(config) # --- Preprocessing Functions (Copied/Adapted from app.py) --- def bias_field_correction(img_array): print(" Running N4 Bias Field Correction...") image = sitk.GetImageFromArray(img_array) if image.GetPixelID() != sitk.sitkFloat32: image = sitk.Cast(image, sitk.sitkFloat32) maskImage = sitk.OtsuThreshold(image, 0, 1, 200) corrector = sitk.N4BiasFieldCorrectionImageFilter() numberFittingLevels = 4 max_iters = [min(50 * (2**i), 200) for i in range(numberFittingLevels)] corrector.SetMaximumNumberOfIterations(max_iters) corrected_image = corrector.Execute(image, maskImage) print(" N4 Correction finished.") return sitk.GetArrayFromImage(corrected_image) def denoise(volume, kernel_size=3): print(f" Applying median filter denoising (kernel={kernel_size})...") return medfilt(volume, kernel_size) def rescale_intensity(volume, percentils=[0.5, 99.5], bins_num=256): print(" Rescaling intensity...") volume_float = volume.astype(np.float32) try: t = skimage.filters.threshold_otsu(volume_float, nbins=256) volume_masked = np.copy(volume_float) volume_masked[volume_masked < t] = 0 obj_volume = volume_masked[np.where(volume_masked > 0)] except ValueError: print(" Otsu failed, skipping background mask.") obj_volume = volume_float.flatten() if obj_volume.size == 0: print(" Warning: No foreground voxels found. Scaling full volume.") obj_volume = volume_float.flatten() min_value = np.min(obj_volume) max_value = np.max(obj_volume) else: min_value = np.percentile(obj_volume, percentils[0]) max_value = np.percentile(obj_volume, percentils[1]) denominator = max_value - min_value if denominator < 1e-6: denominator = 1e-6 output_volume = np.copy(volume_float) if bins_num == 0: output_volume = (volume_float - min_value) / denominator output_volume = np.clip(output_volume, 0.0, 1.0) else: output_volume = np.round((volume_float - min_value) / denominator * (bins_num - 1)) output_volume = np.clip(output_volume, 0, bins_num - 1) return output_volume.astype(np.float32) def equalize_hist(volume, bins_num=256): print(" Performing histogram equalization...") mask = volume > 1e-6 obj_volume = volume[mask] if obj_volume.size == 0: print(" Warning: No non-zero voxels. Skipping equalization.") return volume hist, bins = np.histogram(obj_volume, bins_num, range=(obj_volume.min(), obj_volume.max())) cdf = hist.cumsum() cdf_normalized = (bins_num - 1) * cdf / float(cdf[-1]) equalized_obj_volume = np.interp(obj_volume, bins[:-1], cdf_normalized) equalized_volume = np.copy(volume) equalized_volume[mask] = equalized_obj_volume return equalized_volume.astype(np.float32) def enhance(img_array, run_bias_correction=True, kernel_size=3, percentils=[0.5, 99.5], bins_num=256, run_equalize_hist=True): print("Starting enhancement pipeline...") volume = img_array.astype(np.float32) try: if run_bias_correction: volume = bias_field_correction(volume) volume = denoise(volume, kernel_size) volume = rescale_intensity(volume, percentils, bins_num) if run_equalize_hist: volume = equalize_hist(volume, bins_num) print("Enhancement pipeline finished.") return volume except Exception as e: print(f"Error during enhancement: {e}") traceback.print_exc() raise RuntimeError(f"Failed enhancing image: {e}") def register_image(input_nifti_path, output_nifti_path): print(f"Registering {input_nifti_path} to {DEFAULT_TEMPLATE_PATH}") if not all(os.path.exists(p) for p in [PARAMS_RIGID_PATH, DEFAULT_TEMPLATE_PATH]): raise FileNotFoundError("Elastix parameter or template file not found.") fixed_image = itk.imread(DEFAULT_TEMPLATE_PATH, itk.F) moving_image = itk.imread(input_nifti_path, itk.F) parameter_object = itk.ParameterObject.New() parameter_object.AddParameterFile(PARAMS_RIGID_PATH) result_image, _ = itk.elastix_registration_method(fixed_image, moving_image, parameter_object=parameter_object, log_to_console=False) itk.imwrite(result_image, output_nifti_path) print(f"Registration output saved to {output_nifti_path}") def run_enhance_on_file(input_nifti_path, output_nifti_path): print(f"Running full enhancement on {input_nifti_path}") img_sitk = sitk.ReadImage(input_nifti_path) img_array = sitk.GetArrayFromImage(img_sitk) enhanced_array = enhance(img_array, run_bias_correction=True) enhanced_img_sitk = sitk.GetImageFromArray(enhanced_array) enhanced_img_sitk.CopyInformation(img_sitk) sitk.WriteImage(enhanced_img_sitk, output_nifti_path) print(f"Enhanced image saved to {output_nifti_path}") def run_skull_stripping(input_nifti_path, output_dir): print(f"Running HD-BET skull stripping on {input_nifti_path}") if run_hd_bet is None: raise RuntimeError("HD-BET module not imported.") if not os.path.exists(HD_BET_CONFIG_PATH): raise FileNotFoundError(f"HD-BET config not found at {HD_BET_CONFIG_PATH}") if not os.path.isdir(HD_BET_MODEL_DIR): raise FileNotFoundError(f"HD-BET models not found at {HD_BET_MODEL_DIR}") base_name = os.path.basename(input_nifti_path).replace(".nii.gz", "").replace(".nii", "") output_file_path = os.path.join(output_dir, f"{base_name}_bet.nii.gz") output_mask_path = os.path.join(output_dir, f"{base_name}_bet_mask.nii.gz") os.makedirs(output_dir, exist_ok=True) try: run_hd_bet(input_nifti_path, output_file_path, mode="fast", device='cpu', config_file=HD_BET_CONFIG_PATH, postprocess=False, do_tta=False, keep_mask=True, overwrite=True) finally: pass if not os.path.exists(output_file_path): raise RuntimeError("HD-BET did not produce output file.") print(f"Skull stripping output saved to {output_file_path}") return output_file_path, output_mask_path # --- MONAI Transforms --- resize_transform = Resized(keys=["image"], spatial_size=image_size) scale_transform = ScaleIntensityd(keys=["image"], minv=0.0, maxv=1.0) def preprocess_nifti_for_model(nifti_path): print(f"Preprocessing NIfTI for model: {nifti_path}") scan_data = nib.load(nifti_path).get_fdata() scan_tensor = torch.tensor(scan_data, dtype=torch.float32).unsqueeze(0) # Add C dim sample = {"image": scan_tensor} sample_resized = resize_transform(sample) sample_scaled = scale_transform(sample_resized) input_tensor = sample_scaled["image"].unsqueeze(0).to(device) # Add B dim if input_tensor.dim() != 5: raise ValueError(f"Preprocessing resulted in incorrect shape: {input_tensor.shape}") print(f" Final shape for model: {input_tensor.shape}") return input_tensor # --- Saliency Generation --- def generate_saliency(model_to_use, input_tensor_5d): if GuidedBackpropSmoothGrad is None: raise ImportError("MONAI visualize components not imported.") if model_to_use is None: raise ValueError("Model not loaded.") print("Generating saliency map...") input_tensor_5d.requires_grad_(True) visualizer = GuidedBackpropSmoothGrad(model=model_to_use.backbone.to(device), stdev_spread=0.15, n_samples=10, magnitude=True) try: with torch.enable_grad(): saliency_map_5d = visualizer(input_tensor_5d.to(device)) input_3d = input_tensor_5d.squeeze().cpu().detach().numpy() saliency_3d = saliency_map_5d.squeeze().cpu().detach().numpy() print("Saliency map generated.") return input_3d, saliency_3d except Exception as e: print(f"Error during saliency map generation: {e}") traceback.print_exc() return None, None finally: input_tensor_5d.requires_grad_(False) # --- Plotting Function (Returns NumPy arrays for Gradio) --- def create_slice_plots(mri_data_3d, saliency_data_3d, slice_index): print(f" Generating plots for slice index: {slice_index}") if mri_data_3d is None or saliency_data_3d is None: return None, None, None # Change from the third dimension (axis 2, sagittal) to the first dimension (axis 0, axial) if not (0 <= slice_index < mri_data_3d.shape[0]): print(f" Error: Slice index {slice_index} out of bounds (0-{mri_data_3d.shape[0]-1}).") return None, None, None # Function to save plot to NumPy array def save_plot_to_numpy(fig): with io.BytesIO() as buf: fig.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, dpi=75) # Adjust DPI as needed plt.close(fig) buf.seek(0) img_arr = plt.imread(buf, format='png') # Return RGBA array, can be simplified if only grayscale needed for input return (img_arr * 255).astype(np.uint8) try: # Extract axial slice instead of sagittal mri_slice = mri_data_3d[slice_index, :, :] saliency_slice_orig = saliency_data_3d[slice_index, :, :] # Normalize MRI Slice (using volume stats) p1_vol, p99_vol = np.percentile(mri_data_3d, (1, 99)) mri_norm_denom = max(p99_vol - p1_vol, 1e-6) mri_slice_norm = np.clip((mri_slice - p1_vol) / mri_norm_denom, 0, 1) # Process Saliency Slice saliency_slice = np.copy(saliency_slice_orig) saliency_slice[saliency_slice < 0] = 0 saliency_slice_blurred = cv2.GaussianBlur(saliency_slice, (15, 15), 0) s_max_vol = max(np.max(saliency_data_3d[saliency_data_3d >= 0]), 1e-6) saliency_slice_norm = saliency_slice_blurred / s_max_vol saliency_slice_thresholded = np.where(saliency_slice_norm > 0.0, saliency_slice_norm, 0) # Threshold slightly > 0 # Plot 1: Input Slice fig1, ax1 = plt.subplots(figsize=(6, 6)) ax1.imshow(mri_slice_norm, cmap='gray', interpolation='none', origin='lower') ax1.axis('off') input_plot_np = save_plot_to_numpy(fig1) # Plot 2: Saliency Heatmap fig2, ax2 = plt.subplots(figsize=(6, 6)) ax2.imshow(saliency_slice_thresholded, cmap='magma', interpolation='none', origin='lower', vmin=0) # Set vmin ax2.axis('off') heatmap_plot_np = save_plot_to_numpy(fig2) # Plot 3: Overlay fig3, ax3 = plt.subplots(figsize=(6, 6)) ax3.imshow(mri_slice_norm, cmap='gray', interpolation='none', origin='lower') if np.max(saliency_slice_thresholded) > 0: ax3.contour(saliency_slice_thresholded, cmap='magma', origin='lower', linewidths=1.0, levels=np.linspace(saliency_slice_thresholded.min(), saliency_slice_thresholded.max(), 5)) # Adjust levels ax3.axis('off') overlay_plot_np = save_plot_to_numpy(fig3) print(f" Generated numpy plots successfully for slice {slice_index}.") return input_plot_np, heatmap_plot_np, overlay_plot_np except Exception as e: print(f"Error generating numpy plots for slice {slice_index}: {e}") traceback.print_exc() return None, None, None # Add this function after the create_slice_plots function def create_probability_gauge(probability): """ Creates a gauge visualization for the MCI probability. Args: probability (float): A value between 0 and 1 representing the MCI probability. Returns: numpy.ndarray: A numpy array containing the gauge visualization image. """ # Create a figure with a polar projection fig = plt.figure(figsize=(8, 4)) ax = fig.add_subplot(111, polar=True) # Set the min and max angles for the gauge (in radians) # -pi/2 to pi/2 creates a half-circle (180 degrees) theta_min = -np.pi/2 theta_max = np.pi/2 # Calculate the angle for the needle based on probability (0 to 1) needle_angle = theta_min + probability * (theta_max - theta_min) # Create a color gradient for the gauge background cmap = plt.cm.RdYlGn_r # Red-Yellow-Green colormap (reversed) # Draw the gauge background theta = np.linspace(theta_min, theta_max, 100) radii = np.ones_like(theta) # Create color array for the gauge segments norm = plt.Normalize(0, 1) colors = cmap(np.linspace(0, 1, len(theta))) # Draw colored bars for the gauge width = (theta_max - theta_min) / len(theta) bars = ax.bar(theta, radii, width=width, bottom=0.0, alpha=0.8, linewidth=0) # Set the color for each bar for bar, color in zip(bars, colors): bar.set_facecolor(color) # Add the needle needle_length = 0.9 ax.annotate('', xy=(needle_angle, needle_length), xytext=(needle_angle, 0), arrowprops=dict(arrowstyle='wedge', color='black', lw=2)) # Add boundary markers and labels - move them lower by adjusting y position (1.1 -> 1.3) ax.text(theta_min, 2.2, 'Healthy Control', ha='left', va='center', fontsize=12) ax.text(theta_max, 1.3, 'MCI', ha='right', va='center', fontsize=12) # Add the probability text below the gauge prob_text = f"Probability: {probability:.2f}" fig.text(0.5, 0.15, prob_text, ha='center', va='center', fontsize=14, fontweight='bold') # Set the limits and remove unnecessary elements ax.set_ylim(0, 1.4) # Increased the upper limit to accommodate the lower labels ax.set_theta_zero_location('N') # 0 at the top ax.set_theta_direction(-1) # clockwise ax.set_thetagrids([]) # Remove angle labels ax.grid(False) # Remove grid ax.set_rgrids([]) # Remove radial labels ax.spines['polar'].set_visible(False) # Remove the outer circle # Convert figure to numpy array with io.BytesIO() as buf: fig.savefig(buf, format='png', bbox_inches='tight', pad_inches=0.1, dpi=100) plt.close(fig) buf.seek(0) img_arr = plt.imread(buf, format='png') return (img_arr * 255).astype(np.uint8) # --- Gradio Processing Function --- def process_scan(file_type, uploaded_file, run_preprocess, generate_saliency_flag): if model is None: raise gr.Error("Model is not loaded. Cannot perform prediction.") if uploaded_file is None: raise gr.Error("No file uploaded.") temp_dir = tempfile.mkdtemp() print(f"Created temp directory: {temp_dir}") nifti_for_preprocessing_path = None error_message = None prediction_text = "Processing..." # Initialize outputs to None or placeholder images/values input_slice_img, heatmap_slice_img, overlay_slice_img = None, None, None probability_gauge = None saliency_state = {"input_path": None, "saliency_path": None, "num_slices": 0} slider_update = gr.Slider(value=0, minimum=0, maximum=1, visible=False) # Initially hidden, use max=1 to avoid log(0) error try: # --- Handle Upload and DICOM Conversion --- file_path = uploaded_file.name # Get path from Gradio file object filename = os.path.basename(file_path) print(f"Processing '{filename}' (type: {file_type})") if file_type == 'NIfTI': # Check if the filename ends with either .nii or .nii.gz if not (filename.lower().endswith('.nii.gz') or filename.lower().endswith('.nii')): raise gr.Error("Invalid NIfTI file. Please upload .nii or .nii.gz") # Define the destination path (always .nii.gz for consistency) dest_path = os.path.join(temp_dir, "uploaded_scan.nii.gz") nifti_for_preprocessing_path = dest_path # Check if the uploaded file is uncompressed .nii if filename.lower().endswith('.nii') and not filename.lower().endswith('.nii.gz'): print(f"Detected uncompressed .nii file: {filename}. Compressing to {dest_path}") try: # Load the uncompressed .nii file img = nib.load(file_path) # Save it as a compressed .nii.gz file nib.save(img, dest_path) print(f"Successfully compressed and saved to: {dest_path}") except Exception as e: raise gr.Error(f"Failed to load or compress .nii file: {e}") else: # If it's already .nii.gz, just copy it print(f"Copying compressed NIfTI {filename} to: {dest_path}") shutil.copy(file_path, dest_path) # nifti_for_preprocessing_path is already set to dest_path # print(f"NIfTI path for preprocessing: {nifti_for_preprocessing_path}") # Redundant logging elif file_type == 'DICOM (zip)': if not filename.endswith('.zip'): raise gr.Error("Invalid DICOM file. Please upload a .zip archive.") uploaded_zip_path = os.path.join(temp_dir, "dicom_files.zip") shutil.copy(file_path, uploaded_zip_path) print(f"Copied DICOM zip to: {uploaded_zip_path}") dicom_input_dir = os.path.join(temp_dir, "dicom_input") nifti_output_dir = os.path.join(temp_dir, "nifti_output") os.makedirs(dicom_input_dir, exist_ok=True) os.makedirs(nifti_output_dir, exist_ok=True) try: shutil.unpack_archive(uploaded_zip_path, dicom_input_dir) print("Unzip successful.") except Exception as e: raise gr.Error(f"Error unzipping DICOM file: {e}") try: dicom2nifti.convert_directory(dicom_input_dir, nifti_output_dir, compression=True, reorient=True) nifti_files = [f for f in os.listdir(nifti_output_dir) if f.endswith('.nii.gz')] if not nifti_files: raise RuntimeError("dicom2nifti did not produce a .nii.gz file.") nifti_for_preprocessing_path = os.path.join(nifti_output_dir, nifti_files[0]) print(f"DICOM conversion successful. NIfTI: {nifti_for_preprocessing_path}") except Exception as e: raise gr.Error(f"Error converting DICOM to NIfTI: {e}") else: raise gr.Error("Invalid file type selected.") if not nifti_for_preprocessing_path or not os.path.exists(nifti_for_preprocessing_path): raise gr.Error("Could not find the NIfTI file after initial processing.") # --- Optional Preprocessing --- nifti_to_predict_path = nifti_for_preprocessing_path if run_preprocess: print("--- Running Optional Preprocessing Pipeline ---") try: registered_path = os.path.join(temp_dir, "registered.nii.gz") register_image(nifti_for_preprocessing_path, registered_path) enhanced_path = os.path.join(temp_dir, "enhanced.nii.gz") run_enhance_on_file(registered_path, enhanced_path) skullstrip_output_dir = os.path.join(temp_dir, "skullstripped") skullstripped_path, _ = run_skull_stripping(enhanced_path, skullstrip_output_dir) nifti_to_predict_path = skullstripped_path print("--- Optional Preprocessing Pipeline Complete ---") except Exception as e: raise gr.Error(f"Error during preprocessing: {e}") else: print("--- Skipping Optional Preprocessing Pipeline ---") # --- Prediction (Changed for MCI Classification) --- input_tensor_5d = preprocess_nifti_for_model(nifti_to_predict_path) print("Performing MCI classification prediction...") with torch.no_grad(): try: output = model(input_tensor_5d) # Convert output to probability if isinstance(output, torch.Tensor): logit = output.item() else: logit = output # Apply sigmoid to get probability probability = torch.sigmoid(torch.tensor(logit)).item() predicted_class = 1 if probability > 0.5 else 0 class_label = "MCI" if predicted_class == 1 else "Healthy Control" # Create the probability gauge visualization probability_gauge = create_probability_gauge(probability) # Format prediction text for classification prediction_text = f"Prediction: {class_label} " except Exception as pred_error: print(f"Error during prediction: {pred_error}") traceback.print_exc() raise gr.Error(f"Failed to make prediction: {pred_error}") print(prediction_text) # --- Saliency Map Generation --- if generate_saliency_flag: print("--- Generating Saliency Data ---") try: input_3d, saliency_3d = generate_saliency(model, input_tensor_5d) if input_3d is not None and saliency_3d is not None: num_slices = input_3d.shape[0] # Using axial slices now (first dimension) center_slice_index = num_slices // 2 # Save numpy arrays to the temp dir for the slider callback unique_id = str(uuid.uuid4()) input_array_path = os.path.join(temp_dir, f"{unique_id}_input.npy") saliency_array_path = os.path.join(temp_dir, f"{unique_id}_saliency.npy") np.save(input_array_path, input_3d) np.save(saliency_array_path, saliency_3d) print(f"Saved input array: {input_array_path}") print(f"Saved saliency array: {saliency_array_path}") # Generate initial plots for the center slice input_slice_img, heatmap_slice_img, overlay_slice_img = create_slice_plots(input_3d, saliency_3d, center_slice_index) # Update state for the slider callback saliency_state = { "input_path": input_array_path, "saliency_path": saliency_array_path, "num_slices": num_slices } # Update and show the slider slider_update = gr.Slider(value=center_slice_index, minimum=0, maximum=num_slices - 1, step=1, label="Select Slice", visible=True) print("--- Saliency Generated and Initial Plot Created ---") else: error_message = "Saliency map generation failed." print(f"Warning: {error_message}") except ImportError as e: error_message = f"Cannot generate saliency: {e}" print(f"Warning: {error_message}") except Exception as e: error_message = f"Error during saliency processing: {e}" traceback.print_exc() print(f"Warning: {error_message}") except Exception as e: print(f"Error in process_scan: {e}") traceback.print_exc() # Use gr.Warning for non-fatal errors shown to user if error_message: # Prepend specific error if available gr.Warning(f"{error_message}. General error: {e}") else: gr.Warning(f"An error occurred: {e}") # Return default/error states for outputs return "Error during processing", None, None, None, None, gr.Slider(visible=False), {"input_path": None, "saliency_path": None, "num_slices": 0} finally: # Optional: Schedule cleanup of the temp_dir if files aren't needed long-term # Be cautious if files ARE needed by slider state. Gradio might handle this? # shutil.rmtree(temp_dir, ignore_errors=True) # print(f"Cleaned up temp directory: {temp_dir}") # <--- Defer cleanup pass # Return results including the probability gauge return prediction_text, input_slice_img, heatmap_slice_img, overlay_slice_img, probability_gauge, slider_update, saliency_state # --- Gradio Slider Update Function --- def update_slice_viewer(slice_index, current_state): input_path = current_state.get("input_path") saliency_path = current_state.get("saliency_path") if not input_path or not saliency_path or not os.path.exists(input_path) or not os.path.exists(saliency_path): print(f"Warning: Cannot update slice viewer. Missing or invalid numpy array paths in state: {current_state}") # Return None or placeholder images to indicate error return None, None, None try: input_3d = np.load(input_path) saliency_3d = np.load(saliency_path) num_slices = input_3d.shape[0] # Using axial slices (first dimension) # Ensure slice_index is valid (Gradio slider should handle bounds, but double-check) slice_index = int(slice_index) if not (0 <= slice_index < num_slices): print(f"Warning: Invalid slice index {slice_index} received by update function.") return None, None, None # Or return previous plots? # Generate new plots for the selected slice input_slice_img, heatmap_slice_img, overlay_slice_img = create_slice_plots(input_3d, saliency_3d, slice_index) return input_slice_img, heatmap_slice_img, overlay_slice_img except Exception as e: print(f"Error updating slice viewer for index {slice_index}: {e}") traceback.print_exc() # Return None or indicate error return None, None, None # --- Build Gradio Interface --- with gr.Blocks(css=""" #header-row { min-height: 150px; align-items: center; } .logo-img img { height: 150px; object-fit: contain; } .probability-gauge { display: flex; justify-content: center; margin-top: 1rem; } """) as demo: # Header Row with Logos and Title with gr.Row(elem_id="header-row"): with gr.Column(scale=1): gr.Image(os.path.join(APP_DIR, "static/images/kannlab.png"), show_label=False, interactive=False, show_download_button=False, container=False, elem_classes=["logo-img"]) with gr.Column(scale=3): gr.Markdown( "

" "BrainIAC: MCI Classification" "

" ) with gr.Column(scale=1): gr.Image(os.path.join(APP_DIR, "static/images/brainiac.jpeg"), show_label=False, interactive=False, show_download_button=False, container=False, elem_classes=["logo-img"]) # --- Add model description section --- with gr.Accordion("ℹ️ Model Details and Usage Guide", open=False): gr.Markdown(""" ### 🧠 BrainIAC: MCI Classification **Model Description** A 3D ResNet50 model trained to predict Mild Cognitive Impairment (MCI) from T1-weighted MRI scans. **Training Dataset** - **Subjects**: Trained on T1-weighted MRI scans from subjects with MCI and healthy controls - **Imaging Modality**: T1-weighted MRI - **Preprocessing**: Registration to MNI, N4 bias correction, histogram equalization, skull stripping **Input** - Format: NIfTI or zipped DICOM - Required sequence: T1w (3D) **Output** - Binary classification: MCI or Healthy Control - Probability score for MCI **Intended Use** - Research use only! **NOTE** - Not validated on T2, FLAIR, DWI or other sequences - Not validated on pathological cases beyond MCI - Upload PHI data at own risk! - The model is hosted on a cloud-based CPU instance. - The data is not stored, shared or collected for any purpose! """) # Use gr.State to store paths to numpy arrays for the slider callback saliency_state = gr.State({"input_path": None, "saliency_path": None, "num_slices": 0}) # Main Content Row (Controls Left, Output Right) with gr.Row(): with gr.Column(scale=1): with gr.Group(): gr.Markdown("### Controls") file_type = gr.Radio(["NIfTI", "DICOM (zip)"], label="Select Input File Type", value="NIfTI") scan_file = gr.File(label="Upload Scan File") run_preprocess = gr.Checkbox(label="Run Preprocessing Pipeline ", value=False) generate_saliency_checkbox = gr.Checkbox(label="Generate Saliency Maps ", value=True) submit_btn = gr.Button("Classify MCI", variant="primary") with gr.Column(scale=3): with gr.Group(): gr.Markdown("### Classification Result") prediction_output = gr.Label(label="Classification Result") # Add the probability gauge visualization gr.Markdown("

MCI Probability

") probability_gauge = gr.Image(label="Probability Gauge", type="numpy", show_label=False, elem_classes=["probability-gauge"]) with gr.Group(): gr.Markdown("### Saliency Map Viewer (Axial Slice)") slice_slider = gr.Slider(label="Select Slice", minimum=0, maximum=0, step=1, value=0, visible=False) with gr.Row(): with gr.Column(): gr.Markdown("

Input Slice

") input_slice_img = gr.Image(label="Input Slice", type="numpy", show_label=False) with gr.Column(): gr.Markdown("

Saliency Heatmap

") heatmap_slice_img = gr.Image(label="Saliency Heatmap", type="numpy", show_label=False) with gr.Column(): gr.Markdown("

Overlay

") overlay_slice_img = gr.Image(label="Overlay", type="numpy", show_label=False) # --- Wire Components --- submit_btn.click( fn=process_scan, inputs=[file_type, scan_file, run_preprocess, generate_saliency_checkbox], outputs=[prediction_output, input_slice_img, heatmap_slice_img, overlay_slice_img, probability_gauge, slice_slider, saliency_state] ) slice_slider.change( fn=update_slice_viewer, inputs=[slice_slider, saliency_state], outputs=[input_slice_img, heatmap_slice_img, overlay_slice_img] ) # --- Launch the App --- if __name__ == "__main__": if model is None: print("ERROR: Model failed to load. Gradio app cannot start.") else: print("Launching Gradio Interface...") demo.launch(server_name="0.0.0.0", server_port=7860, debug=False, share=False)