Divyanshu Tak
V0-commit
5a169ab
import os
import torch
import nibabel as nib
from flask import Flask, request, render_template, redirect, url_for, flash, jsonify
import tempfile
import yaml
import traceback # For detailed error printing
import zipfile
import dicom2nifti
import shutil
import subprocess # To run unzip command
import SimpleITK as sitk
import itk
import numpy as np
from scipy.signal import medfilt
import skimage.filters
import cv2 # For Gaussian Blur
import io # For saving plots to memory
import base64 # For encoding plots
import uuid # For unique IDs
# Configure Matplotlib for non-GUI backend *before* importing pyplot
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
# --- Preprocessing Imports ---
try:
# Adjust import path based on Docker structure
# Assumes HD_BET is now at /app/BrainIAC/HD_BET
from HD_BET.run import run_hd_bet
# Import MONAI saliency visualizer
from monai.visualize.gradient_based import GuidedBackpropSmoothGrad
except ImportError as e:
print(f"Could not import HD_BET or MONAI visualize: {e}. Advanced features might fail.")
run_hd_bet = None
GuidedBackpropSmoothGrad = None
# Import necessary components from your existing modules
from model import Backbone, SingleScanModel, Classifier
# Removed: from dataset2 import NormalSynchronizedTransform3D
# Import specific MONAI transforms needed
from monai.transforms import Resized, ScaleIntensityd # Removed ToTensord, will handle manually
app = Flask(__name__)
app.secret_key = 'supersecretkey' # Needed for flashing messages
# --- Constants for Preprocessing ---
APP_DIR = os.path.dirname(__file__)
TEMPLATE_DIR = os.path.join(APP_DIR, "golden_image", "mni_templates")
PARAMS_RIGID_PATH = os.path.join(APP_DIR, "golden_image", "mni_templates", "Parameters_Rigid.txt")
DEFAULT_TEMPLATE_PATH = os.path.join(TEMPLATE_DIR, "nihpd_asym_13.0-18.5_t1w.nii") # Using adult template as default
HD_BET_CONFIG_PATH = os.path.join(APP_DIR, "HD_BET", "config.py")
HD_BET_MODEL_DIR = os.path.join(APP_DIR, "hdbet_model") # Path to copied models
# --- Configuration Loading ---
def load_config():
# Assuming config.yml is in the same directory as app.py
config_path = os.path.join(APP_DIR, 'config.yml')
try:
with open(config_path, 'r') as file:
config = yaml.safe_load(file)
# Add default image_size if not present in config
if 'data' not in config: config['data'] = {}
if 'image_size' not in config['data']: config['data']['image_size'] = [128, 128, 128]
except FileNotFoundError:
print(f"Error: Configuration file not found at {config_path}")
# Provide default config or handle error appropriately
config = {
'gpu': {'device': 'cpu'},
'infer': {'checkpoints': 'checkpoints/brainage_model_latest.pt'},
'data': {'image_size': [128, 128, 128]} # Default image size
}
return config
config = load_config()
# Ensure image_size is available, e.g., from config or a default
DEFAULT_IMAGE_SIZE = (128, 128, 128)
image_size_cfg = config.get('data', {}).get('image_size', DEFAULT_IMAGE_SIZE)
# Validate image_size format
if not isinstance(image_size_cfg, (list, tuple)) or len(image_size_cfg) != 3:
print(f"Warning: Invalid image_size in config ({image_size_cfg}). Using default {DEFAULT_IMAGE_SIZE}.")
image_size = DEFAULT_IMAGE_SIZE
else:
image_size = tuple(image_size_cfg) # Ensure it's a tuple for transforms
# --- Model Loading ---
def load_model(device, checkpoint_path):
backbone = Backbone()
classifier = Classifier(d_model=2048) # Make sure d_model matches your trained model
model = SingleScanModel(backbone, classifier)
try:
# Construct absolute path if checkpoint_path is relative
relative_path = config.get('infer', {}).get('checkpoints', 'checkpoints/brainage_model_latest.pt')
# Use path relative to app.py location
checkpoint_path_abs = os.path.join(APP_DIR, relative_path)
checkpoint = torch.load(checkpoint_path_abs, map_location=device)
# Adjust key if necessary based on how model was saved
if 'model_state_dict' in checkpoint:
model.load_state_dict(checkpoint['model_state_dict'])
else:
model.load_state_dict(checkpoint)
model.to(device)
model.eval()
print(f"Model loaded successfully from {checkpoint_path_abs} onto {device}.")
return model
except FileNotFoundError:
print(f"Error: Checkpoint file not found at {checkpoint_path_abs}")
return None
except Exception as e:
print(f"Error loading model checkpoint: {e}")
traceback.print_exc()
return None
device = torch.device(config.get('gpu', {}).get('device', 'cpu')) # Default to CPU
model = load_model(device, config) # Pass full config for path finding
# --- Preprocessing Functions from preprocess_utils.py ---
def bias_field_correction(img_array):
"""Performs N4 bias field correction using SimpleITK."""
image = sitk.GetImageFromArray(img_array)
# Ensure image is float32 for N4
if image.GetPixelID() != sitk.sitkFloat32:
image = sitk.Cast(image, sitk.sitkFloat32)
maskImage = sitk.OtsuThreshold(image, 0, 1, 200)
corrector = sitk.N4BiasFieldCorrectionImageFilter()
numberFittingLevels = 4
# Define iterations per level more robustly
max_iters = [min(50 * (2**i), 200) for i in range(numberFittingLevels)]
corrector.SetMaximumNumberOfIterations(max_iters)
# Set convergence threshold (optional, can speed up)
# corrector.SetConvergenceThreshold(1e-6)
print(" Running N4 Bias Field Correction...")
corrected_image = corrector.Execute(image, maskImage)
print(" N4 Correction finished.")
return sitk.GetArrayFromImage(corrected_image)
def denoise(volume, kernel_size=3):
"""Applies median filter for denoising."""
print(f" Applying median filter denoising (kernel={kernel_size})...")
return medfilt(volume, kernel_size)
def rescale_intensity(volume, percentils=[0.5, 99.5], bins_num=256):
"""Rescales intensity after removing background via Otsu."""
print(" Rescaling intensity...")
# Ensure input is float for Otsu and calculations
volume_float = volume.astype(np.float32)
try:
t = skimage.filters.threshold_otsu(volume_float, nbins=256)
print(f" Otsu threshold found: {t}")
volume_masked = np.copy(volume_float)
volume_masked[volume_masked < t] = 0 # Apply mask based on original values
obj_volume = volume_masked[np.where(volume_masked > 0)]
except ValueError: # Handle cases with near-uniform intensity
print(" Otsu failed (likely uniform image), skipping background mask.")
obj_volume = volume_float.flatten()
if obj_volume.size == 0:
print(" Warning: No foreground voxels found after Otsu. Scaling full volume.")
obj_volume = volume_float.flatten() # Fallback to full volume
min_value = np.min(obj_volume)
max_value = np.max(obj_volume)
else:
min_value = np.percentile(obj_volume, percentils[0])
max_value = np.percentile(obj_volume, percentils[1])
print(f" Intensity range used for scaling: [{min_value:.2f}, {max_value:.2f}]")
# Avoid division by zero if max == min
denominator = max_value - min_value
if denominator < 1e-6: denominator = 1e-6
# Create a copy to modify for output
output_volume = np.copy(volume_float)
# Apply scaling only to the object volume identified (or full volume as fallback)
if bins_num == 0:
# Scale to 0-1 (float)
output_volume = (volume_float - min_value) / denominator
output_volume = np.clip(output_volume, 0.0, 1.0) # Clip results to [0, 1]
else:
# Scale and bin
output_volume = np.round((volume_float - min_value) / denominator * (bins_num - 1))
output_volume = np.clip(output_volume, 0, bins_num - 1) # Ensure within bin range
# Ensure output is float32 for consistency
return output_volume.astype(np.float32)
def equalize_hist(volume, bins_num=256):
"""Performs histogram equalization on non-zero voxels."""
print(" Performing histogram equalization...")
# Create a mask of non-zero voxels
mask = volume > 1e-6 # Use a small epsilon for float comparison
obj_volume = volume[mask]
if obj_volume.size == 0:
print(" Warning: No non-zero voxels found for histogram equalization. Skipping.")
return volume # Return original volume if no foreground
# Compute histogram and CDF on the non-zero voxels
hist, bins = np.histogram(obj_volume, bins_num, range=(obj_volume.min(), obj_volume.max()))
cdf = hist.cumsum()
# Normalize CDF
cdf_normalized = (bins_num - 1) * cdf / float(cdf[-1])
# Interpolate new values for the object volume
equalized_obj_volume = np.interp(obj_volume, bins[:-1], cdf_normalized)
# Create a copy of the original volume to put the results back
equalized_volume = np.copy(volume)
equalized_volume[mask] = equalized_obj_volume
# Ensure output is float32
return equalized_volume.astype(np.float32)
def enhance(img_array, run_bias_correction=True, kernel_size=3, percentils=[0.5, 99.5], bins_num=256, run_equalize_hist=True):
"""Full enhancement pipeline from preprocess_utils."""
print("Starting enhancement pipeline...")
volume = img_array.astype(np.float32) # Ensure float input
try:
if run_bias_correction:
volume = bias_field_correction(volume)
volume = denoise(volume, kernel_size)
volume = rescale_intensity(volume, percentils, bins_num)
if run_equalize_hist:
volume = equalize_hist(volume, bins_num)
print("Enhancement pipeline finished.")
return volume
except Exception as e:
print(f"Error during enhancement: {e}")
traceback.print_exc()
raise RuntimeError(f"Failed enhancing image: {e}") # Re-raise to stop processing
# --- Registration Function (modified enhance call) ---
def register_image(input_nifti_path, output_nifti_path):
"""Registers input NIfTI to the default template using Elastix."""
print(f"Registering {input_nifti_path} to {DEFAULT_TEMPLATE_PATH}")
if not os.path.exists(PARAMS_RIGID_PATH):
raise FileNotFoundError(f"Elastix parameter file not found at {PARAMS_RIGID_PATH}")
if not os.path.exists(DEFAULT_TEMPLATE_PATH):
raise FileNotFoundError(f"Default template file not found at {DEFAULT_TEMPLATE_PATH}")
fixed_image = itk.imread(DEFAULT_TEMPLATE_PATH, itk.F)
moving_image = itk.imread(input_nifti_path, itk.F)
parameter_object = itk.ParameterObject.New()
parameter_object.AddParameterFile(PARAMS_RIGID_PATH)
result_image, _ = itk.elastix_registration_method(
fixed_image, moving_image,
parameter_object=parameter_object,
log_to_console=False # Keep console clean
)
itk.imwrite(result_image, output_nifti_path)
print(f"Registration output saved to {output_nifti_path}")
# --- Enhanced Image Function (calls actual enhance) ---
def run_enhance_on_file(input_nifti_path, output_nifti_path):
"""Reads NIfTI, runs enhance pipeline, saves NIfTI."""
print(f"Running full enhancement on {input_nifti_path}")
img_sitk = sitk.ReadImage(input_nifti_path)
img_array = sitk.GetArrayFromImage(img_sitk)
# Run the actual enhancement pipeline
enhanced_array = enhance(img_array, run_bias_correction=True) # Assuming N4 is desired
enhanced_img_sitk = sitk.GetImageFromArray(enhanced_array)
enhanced_img_sitk.CopyInformation(img_sitk) # Preserve metadata
sitk.WriteImage(enhanced_img_sitk, output_nifti_path)
print(f"Enhanced image saved to {output_nifti_path}")
# --- Skull Stripping Function (Set Environment Variable) ---
def run_skull_stripping(input_nifti_path, output_dir):
"""Runs HD-BET skull stripping."""
print(f"Running HD-BET skull stripping on {input_nifti_path}")
if run_hd_bet is None:
raise RuntimeError("HD-BET module could not be imported. Cannot perform skull stripping.")
# Removed environment variable setting as path is fixed in HD_BET/paths.py
# # Set environment variable *before* calling run_hd_bet
# # Ensure the target directory exists
# if not os.path.isdir(HD_BET_MODEL_DIR):
# raise FileNotFoundError(f"HD-BET model directory not found at specified path: {HD_BET_MODEL_DIR}")
# print(f"Setting HD_BET_MODELS environment variable to: {HD_BET_MODEL_DIR}")
# os.environ['HD_BET_MODELS'] = HD_BET_MODEL_DIR
# Check config path
if not os.path.exists(HD_BET_CONFIG_PATH):
alt_config_path = os.path.join(APP_DIR, "HD_BET", "HD_BET", "config.py")
if os.path.exists(alt_config_path):
print(f"Warning: Using alternative HD-BET config path: {alt_config_path}")
config_to_use = alt_config_path
else:
raise FileNotFoundError(f"HD-BET config file not found at {HD_BET_CONFIG_PATH} or {alt_config_path}")
else:
config_to_use = HD_BET_CONFIG_PATH
# Define output paths
base_name = os.path.basename(input_nifti_path).replace(".nii.gz", "").replace(".nii", "")
output_file_path = os.path.join(output_dir, f"{base_name}_bet.nii.gz")
output_mask_path = os.path.join(output_dir, f"{base_name}_bet_mask.nii.gz")
# Make sure output directory exists
os.makedirs(output_dir, exist_ok=True)
# Run HD-BET
run_hd_bet(input_nifti_path, output_file_path,
mode="fast",
device='cpu',
config_file=config_to_use,
postprocess=False,
do_tta=False,
keep_mask=True,
overwrite=True)
# Unset environment variable after use (optional, good practice)
# del os.environ['HD_BET_MODELS']
if not os.path.exists(output_file_path):
raise RuntimeError(f"HD-BET did not produce the expected output file: {output_file_path}")
print(f"Skull stripping output saved to {output_file_path}")
return output_file_path, output_mask_path
# --- Image Preprocessing ---
# Define necessary MONAI transforms directly
# Keys must match the dictionary keys we create later ('image')
resize_transform = Resized(keys=["image"], spatial_size=image_size)
scale_transform = ScaleIntensityd(keys=["image"], minv=0.0, maxv=1.0)
def preprocess_nifti(nifti_path):
"""Loads and preprocesses a NIfTI file, returning a 5D tensor."""
print(f"Preprocessing NIfTI: {nifti_path}")
scan_data = nib.load(nifti_path).get_fdata()
print(f" Loaded scan data shape: {scan_data.shape}")
scan_tensor = torch.tensor(scan_data, dtype=torch.float32).unsqueeze(0) # Add C dim
print(f" Shape after tensor+channel: {scan_tensor.shape}")
sample = {"image": scan_tensor}
sample_resized = resize_transform(sample)
print(f" Shape after resize: {sample_resized['image'].shape}")
sample_scaled = scale_transform(sample_resized)
print(f" Shape after scaling: {sample_scaled['image'].shape}")
input_tensor = sample_scaled["image"].unsqueeze(0).to(device) # Add B dim
print(f" Final shape for model: {input_tensor.shape}")
if input_tensor.dim() != 5:
raise ValueError(f"Preprocessing resulted in incorrect shape: {input_tensor.shape}. Expected 5D.")
return input_tensor
# --- Final NIfTI Preprocessing for Model ---
def preprocess_nifti_for_model(nifti_path):
"""Loads final NIfTI and prepares 5D tensor for the model."""
# ... (Same as previous preprocess_nifti function) ...
print(f"Preprocessing NIfTI for model: {nifti_path}")
scan_data = nib.load(nifti_path).get_fdata()
print(f" Loaded scan data shape: {scan_data.shape}")
scan_tensor = torch.tensor(scan_data, dtype=torch.float32).unsqueeze(0) # Add C dim
print(f" Shape after tensor+channel: {scan_tensor.shape}")
sample = {"image": scan_tensor}
sample_resized = resize_transform(sample)
print(f" Shape after resize: {sample_resized['image'].shape}")
sample_scaled = scale_transform(sample_resized)
print(f" Shape after scaling: {sample_scaled['image'].shape}")
input_tensor = sample_scaled["image"].unsqueeze(0).to(device) # Add B dim
print(f" Final shape for model: {input_tensor.shape}")
if input_tensor.dim() != 5:
raise ValueError(f"Preprocessing resulted in incorrect shape: {input_tensor.shape}. Expected 5D.")
return input_tensor
# --- Saliency Map Generation ---
def generate_saliency(model, input_tensor_5d):
"""Generates saliency map using GuidedBackpropSmoothGrad."""
if GuidedBackpropSmoothGrad is None:
raise ImportError("MONAI visualize components not imported. Cannot generate saliency map.")
if model is None:
raise ValueError("Model not loaded. Cannot generate saliency map.")
print("Generating saliency map...")
input_tensor_5d.requires_grad_(True)
# Use the backbone for saliency as in the original script
# Ensure model and backbone are on the correct device (CPU in this case)
visualizer = GuidedBackpropSmoothGrad(model=model.backbone.to(device),
stdev_spread=0.15,
n_samples=10,
magnitude=True)
try:
with torch.enable_grad():
saliency_map_5d = visualizer(input_tensor_5d.to(device))
print("Saliency map generated.")
# Detach, move to CPU, remove Batch and Channel dims for processing/plotting -> (D, H, W)
input_3d = input_tensor_5d.squeeze().cpu().detach().numpy()
saliency_3d = saliency_map_5d.squeeze().cpu().detach().numpy()
return input_3d, saliency_3d
except Exception as e:
print(f"Error during saliency map generation: {e}")
traceback.print_exc()
# Return None or empty arrays if generation fails
return None, None
finally:
# Ensure requires_grad is turned off if it was modified
input_tensor_5d.requires_grad_(False)
# --- Plotting Function for Single Slice ---
def create_plot_images_for_slice(mri_data_3d, saliency_data_3d, slice_index):
"""Creates base64 encoded PNGs for a specific axial slice index."""
print(f" Generating plots for slice index: {slice_index}")
if mri_data_3d is None or saliency_data_3d is None:
print(" Input or Saliency data is None, cannot generate plot.")
return None
if slice_index < 0 or slice_index >= mri_data_3d.shape[2]:
print(f" Error: Slice index {slice_index} out of bounds (0-{mri_data_3d.shape[2]-1}).")
return None
# Function to save plot to base64 string (copied from previous version)
def save_plot_to_base64(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, dpi=75)
plt.close(fig) # Close the figure immediately
buf.seek(0)
img_str = base64.b64encode(buf.read()).decode('utf-8')
buf.close()
return img_str
try:
mri_slice = mri_data_3d[:, :, slice_index]
saliency_slice_orig = saliency_data_3d[:, :, slice_index]
# --- Normalize MRI Slice (using volume stats if available, otherwise slice stats) ---
# For consistency, ideally pass volume stats, but recalculating per slice is fallback
p1_vol, p99_vol = np.percentile(mri_data_3d, (1, 99))
mri_norm_denom = p99_vol - p1_vol
if mri_norm_denom < 1e-6: mri_norm_denom = 1e-6
mri_slice_norm = np.clip(mri_slice, p1_vol, p99_vol)
mri_slice_norm = (mri_slice_norm - p1_vol) / mri_norm_denom
# --- Process Saliency Slice ---
saliency_slice = np.copy(saliency_slice_orig)
saliency_slice[saliency_slice < 0] = 0 # Ensure non-negative
saliency_slice_blurred = cv2.GaussianBlur(saliency_slice, (15, 15), 0)
# Use volume max for normalization if possible, fallback to slice max
s_max_vol = np.max(saliency_data_3d[saliency_data_3d >= 0]) # Max of non-negative values in volume
if s_max_vol < 1e-6: s_max_vol = 1e-6
# --- Add logging for the calculated global max ---
print(f" Calculated Global Max Saliency (s_max_vol) for normalization: {s_max_vol:.4f}")
# --------------------------------------------------
saliency_slice_norm = saliency_slice_blurred / s_max_vol
threshold_value = 0.0
saliency_slice_thresholded = np.where(saliency_slice_norm > threshold_value, saliency_slice_norm, 0)
# --- Generate Plots ---
slice_plots = {}
# Plot 1: Input Slice
fig1, ax1 = plt.subplots(figsize=(3, 3))
ax1.imshow(mri_slice_norm, cmap='gray', interpolation='none', origin='lower')
ax1.axis('off')
slice_plots['input_slice'] = save_plot_to_base64(fig1)
# Plot 2: Saliency Heatmap
fig2, ax2 = plt.subplots(figsize=(3, 3))
ax2.imshow(saliency_slice_thresholded, cmap='magma', interpolation='none', origin='lower')
ax2.axis('off')
slice_plots['heatmap_slice'] = save_plot_to_base64(fig2)
# Plot 3: Overlay
fig3, ax3 = plt.subplots(figsize=(3, 3))
ax3.imshow(mri_slice_norm, cmap='gray', interpolation='none', origin='lower')
if np.max(saliency_slice_thresholded) > 0:
# Remove fixed levels to let contour auto-determine levels based on slice data
ax3.contour(saliency_slice_thresholded, cmap='magma', origin='lower', linewidths=1.0)
ax3.axis('off')
slice_plots['overlay_slice'] = save_plot_to_base64(fig3)
print(f" Generated plots successfully for slice {slice_index}.")
return slice_plots
except Exception as e:
print(f"Error generating plots for slice {slice_index}: {e}")
traceback.print_exc()
return None
# --- Flask Routes ---
@app.route('/', methods=['GET'])
def index():
return render_template('index.html')
@app.route('/predict', methods=['POST'])
def predict():
if model is None:
flash('Model not loaded. Cannot perform prediction.', 'error')
return redirect(url_for('index'))
# Get form data
file_type = request.form.get('file_type')
run_preprocess_flag = request.form.get('preprocess') == 'yes'
generate_saliency_flag = request.form.get('generate_saliency') == 'yes' # Get saliency flag
file = request.files.get('scan_file')
# --- Basic Input Validation ---
if not file_type:
flash('Please select a file type (NIfTI or DICOM).', 'error')
return redirect(url_for('index'))
if not file or file.filename == '':
flash('No scan file selected', 'error')
return redirect(url_for('index'))
print(f"Received upload: type='{file_type}', filename='{file.filename}', preprocess={run_preprocess_flag}, saliency={generate_saliency_flag}")
# --- Setup Temporary Directory ---
# temp_dir_obj = tempfile.TemporaryDirectory() # <--- PROBLEM: Cleans up automatically
# Use mkdtemp to create a persistent temporary directory
# NOTE: Requires a manual cleanup strategy later!
try:
temp_dir = tempfile.mkdtemp()
except Exception as e:
print(f"Error creating temporary directory: {e}")
flash("Server error: Could not create temporary directory.", "error")
return redirect(url_for('index'))
# Generate a unique ID based on the temp directory name
unique_id = os.path.basename(temp_dir)
print(f"Created persistent temp directory: {temp_dir} (ID: {unique_id})")
nifti_for_preprocessing_path = None # Path to the NIfTI before optional preprocessing
try:
# --- Handle Upload and DICOM Conversion ---
# --- Handle NIfTI Upload ---
if file_type == 'nifti':
if not file.filename.endswith('.nii.gz'):
flash('Invalid file type for NIfTI selection. Please upload .nii.gz', 'error')
# temp_dir_obj.cleanup() # No object to cleanup, need manual rmtree
shutil.rmtree(temp_dir, ignore_errors=True)
return redirect(url_for('index'))
uploaded_file_path = os.path.join(temp_dir, "uploaded_scan.nii.gz")
file.save(uploaded_file_path)
print(f"Saved uploaded NIfTI file to: {uploaded_file_path}")
nifti_for_preprocessing_path = uploaded_file_path
# --- Handle DICOM Upload ---
elif file_type == 'dicom':
if not file.filename.endswith('.zip'):
flash('Invalid file type for DICOM selection. Please upload a .zip file.', 'error')
# temp_dir_obj.cleanup()
shutil.rmtree(temp_dir, ignore_errors=True)
return redirect(url_for('index'))
uploaded_zip_path = os.path.join(temp_dir, "dicom_files.zip")
file.save(uploaded_zip_path)
print(f"Saved uploaded DICOM zip to: {uploaded_zip_path}")
dicom_input_dir = os.path.join(temp_dir, "dicom_input")
nifti_output_dir = os.path.join(temp_dir, "nifti_output")
os.makedirs(dicom_input_dir, exist_ok=True)
os.makedirs(nifti_output_dir, exist_ok=True)
try:
# Use shutil.unpack_archive for better cross-platform compatibility potentially
shutil.unpack_archive(uploaded_zip_path, dicom_input_dir)
print(f"Unzip successful.")
except Exception as e:
print(f"Unzip failed: {e}")
flash(f'Error unzipping DICOM file: {e}', 'error')
# temp_dir_obj.cleanup()
shutil.rmtree(temp_dir, ignore_errors=True)
return redirect(url_for('index'))
try:
dicom2nifti.convert_directory(dicom_input_dir, nifti_output_dir, compression=True, reorient=True)
nifti_files = [f for f in os.listdir(nifti_output_dir) if f.endswith('.nii.gz')]
if not nifti_files:
raise RuntimeError("dicom2nifti did not produce a .nii.gz file.")
nifti_for_preprocessing_path = os.path.join(nifti_output_dir, nifti_files[0])
print(f"DICOM conversion successful. NIfTI file: {nifti_for_preprocessing_path}")
except Exception as e:
print(f"DICOM to NIfTI conversion failed: {e}")
flash(f'Error converting DICOM to NIfTI: {e}', 'error')
# temp_dir_obj.cleanup()
shutil.rmtree(temp_dir, ignore_errors=True)
return redirect(url_for('index'))
else:
flash('Invalid file type selected.', 'error')
# temp_dir_obj.cleanup()
shutil.rmtree(temp_dir, ignore_errors=True)
return redirect(url_for('index'))
if not nifti_for_preprocessing_path or not os.path.exists(nifti_for_preprocessing_path):
flash('Error: Could not find the NIfTI file for processing.', 'error')
# temp_dir_obj.cleanup()
shutil.rmtree(temp_dir, ignore_errors=True)
return redirect(url_for('index'))
# --- Optional Preprocessing Steps ---
nifti_to_predict_path = nifti_for_preprocessing_path
if run_preprocess_flag:
print("--- Running Optional Preprocessing Pipeline ---")
try:
registered_path = os.path.join(temp_dir, "registered.nii.gz")
register_image(nifti_for_preprocessing_path, registered_path)
enhanced_path = os.path.join(temp_dir, "enhanced.nii.gz")
run_enhance_on_file(registered_path, enhanced_path)
skullstrip_output_dir = os.path.join(temp_dir, "skullstripped")
skullstripped_path, _ = run_skull_stripping(enhanced_path, skullstrip_output_dir)
nifti_to_predict_path = skullstripped_path
print("--- Optional Preprocessing Pipeline Complete ---")
except Exception as e:
print(f"Error during optional preprocessing pipeline: {e}")
traceback.print_exc()
flash(f'Error during preprocessing: {e}', 'error')
# temp_dir_obj.cleanup()
shutil.rmtree(temp_dir, ignore_errors=True)
return redirect(url_for('index'))
else:
print("--- Skipping Optional Preprocessing Pipeline ---")
# --- Final Preprocessing for Model & Prediction ---
input_tensor_5d = preprocess_nifti_for_model(nifti_to_predict_path)
print("Performing prediction...")
with torch.no_grad():
output = model(input_tensor_5d)
predicted_age = output.item()
predicted_age_years = predicted_age / 12 # Adjust if needed
print(f"Prediction successful: {predicted_age_years:.2f} years")
# --- Saliency Data Handling (Generate, Save, Get Initial Plot) ---
saliency_output_for_template = None # Initialize
if generate_saliency_flag:
print("--- Generating & Saving Saliency Data ---")
try:
input_3d_for_plot, saliency_3d = generate_saliency(model, input_tensor_5d)
if input_3d_for_plot is not None and saliency_3d is not None:
num_slices = input_3d_for_plot.shape[2]
center_slice_index = num_slices // 2
# Save the numpy arrays for the dynamic route
input_array_path = os.path.join(temp_dir, f"{unique_id}_input.npy")
saliency_array_path = os.path.join(temp_dir, f"{unique_id}_saliency.npy")
np.save(input_array_path, input_3d_for_plot)
np.save(saliency_array_path, saliency_3d)
print(f"Saved input array to {input_array_path}")
print(f"Saved saliency array to {saliency_array_path}")
# Generate ONLY the center slice plots for the initial view
center_slice_plots = create_plot_images_for_slice(input_3d_for_plot, saliency_3d, center_slice_index)
if center_slice_plots:
# Prepare data structure for the template
saliency_output_for_template = {
'center_slice_plots': center_slice_plots,
'num_slices': num_slices,
'center_slice_index': center_slice_index,
'unique_id': unique_id, # Pass the ID for filenames
'temp_dir_path': temp_dir # Pass the full path for lookup
}
print("--- Saliency Data Saved & Initial Plot Generated ---")
else:
print("--- Center Slice Plotting Failed ---")
flash('Failed to generate initial saliency plot.', 'warning')
else:
print("--- Saliency Generation Failed --- ")
flash('Saliency map generation failed.', 'warning')
except Exception as e:
print(f"Error during saliency processing/saving: {e}")
traceback.print_exc()
flash('Could not generate or save saliency maps due to an error.', 'error')
# Render result, passing prediction and potentially the NEW saliency structure
return render_template('index.html',
prediction=f"{predicted_age_years:.2f} years",
saliency_info=saliency_output_for_template) # Pass the new dict
except Exception as e:
flash(f'Error processing file: {e}', 'error')
print(f"Caught Exception during prediction process: {e}")
traceback.print_exc()
# Ensure cleanup happens even if exception occurs mid-process
# temp_dir_obj.cleanup()
if temp_dir and os.path.exists(temp_dir):
shutil.rmtree(temp_dir, ignore_errors=True) # Manual cleanup on general error
return redirect(url_for('index'))
# NOTE: Temporary directory created with mkdtemp is NOT automatically cleaned.
# Need a separate mechanism (e.g., cron job, background task) to remove old directories
# from the system's temporary location (e.g., /tmp) based on age.
# Leaving the directory here so /get_slice can access the files.
# --- New Route for Dynamic Slice Loading ---
@app.route('/get_slice/<unique_id>/<int:slice_index>')
def get_slice(unique_id, slice_index):
# Get the actual temporary directory path from query parameter
temp_dir_path = request.args.get('path')
if not temp_dir_path:
print("Error: 'path' query parameter missing in /get_slice request")
return jsonify({"error": "Required path information missing."}), 400
# Construct paths using the provided directory path and unique ID
input_array_path = os.path.join(temp_dir_path, f"{unique_id}_input.npy")
saliency_array_path = os.path.join(temp_dir_path, f"{unique_id}_saliency.npy")
print(f"Attempting to load slice {slice_index} for ID {unique_id} from actual path: {temp_dir_path}")
try:
# Check using the exact paths constructed above
if not os.path.exists(input_array_path) or not os.path.exists(saliency_array_path):
print(f"Error: .npy files not found for ID {unique_id} at {temp_dir_path}")
return jsonify({"error": "Saliency data not found. It might have expired or failed to save."}), 404
input_3d = np.load(input_array_path)
saliency_3d = np.load(saliency_array_path)
print(f"Loaded arrays for ID {unique_id}. Input shape: {input_3d.shape}, Saliency shape: {saliency_3d.shape}")
# Generate plots for the requested slice using the helper function
slice_plots = create_plot_images_for_slice(input_3d, saliency_3d, slice_index)
if slice_plots:
return jsonify(slice_plots) # Return plot data as JSON
else:
return jsonify({"error": f"Failed to generate plots for slice {slice_index}."}), 500
except Exception as e:
print(f"Error in /get_slice for ID {unique_id}, slice {slice_index}: {e}")
traceback.print_exc()
return jsonify({"error": "An internal error occurred while fetching the slice data."}), 500
if __name__ == '__main__':
# Use '0.0.0.0' to make it accessible outside the container
app.run(host='0.0.0.0', port=5000, debug=False) # Turn off debug for production/docker