File size: 35,169 Bytes
5a169ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 |
import os
import torch
import nibabel as nib
import gradio as gr
import tempfile
import yaml
import traceback # For detailed error printing
import zipfile
import dicom2nifti
import shutil
import subprocess # To run unzip command
import SimpleITK as sitk
import itk
import numpy as np
from scipy.signal import medfilt
import skimage.filters
import cv2 # For Gaussian Blur
import io # For saving plots to memory
import base64 # For encoding plots
import uuid # For unique IDs
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg') # Use non-interactive backend
# --- Custom CSS to hide buttons in logo columns ---
# REVERTING CSS CHANGES AS THEY HID THE LOGOS
# custom_css = """
# .logo-column button {
# /* display: none !important; */ /* This seemed to hide the whole component */
# visibility: hidden !important; /* Try making it invisible instead */
# }
# """
# --- Potential Import Issues (Check Paths in Docker/Local) ---
try:
# Assumes HD_BET is now at /app/BrainIAC/HD_BET or adjacent in src
from HD_BET.run import run_hd_bet
from monai.visualize.gradient_based import GuidedBackpropSmoothGrad
except ImportError as e:
print(f"Warning: Could not import HD_BET or MONAI visualize: {e}. Saliency/Preprocessing might fail.")
run_hd_bet = None
GuidedBackpropSmoothGrad = None
# Import necessary components from your existing modules
from model import Backbone, SingleScanModel, Classifier
from monai.transforms import Resized, ScaleIntensityd
# --- Constants ---
APP_DIR = os.path.dirname(__file__)
TEMPLATE_DIR = os.path.join(APP_DIR, "golden_image", "mni_templates")
PARAMS_RIGID_PATH = os.path.join(APP_DIR, "golden_image", "mni_templates", "Parameters_Rigid.txt")
DEFAULT_TEMPLATE_PATH = os.path.join(TEMPLATE_DIR, "nihpd_asym_13.0-18.5_t1w.nii")
HD_BET_CONFIG_PATH = os.path.join(APP_DIR, "HD_BET", "config.py") # May need adjustment based on actual HD_BET location
HD_BET_MODEL_DIR = os.path.join(APP_DIR, "hdbet_model") # Path to copied models
# --- Configuration Loading ---
def load_config():
config_path = os.path.join(APP_DIR, 'config.yml')
try:
with open(config_path, 'r') as file:
config = yaml.safe_load(file)
if 'data' not in config: config['data'] = {}
if 'image_size' not in config['data']: config['data']['image_size'] = [128, 128, 128]
except FileNotFoundError:
print(f"Warning: Configuration file not found at {config_path}. Using defaults.")
config = {
'gpu': {'device': 'cpu'},
'infer': {'checkpoints': 'checkpoints/mci_model.pt'}, # Updated for new MCI model filename
'data': {'image_size': [128, 128, 128]}
}
return config
config = load_config()
DEFAULT_IMAGE_SIZE = (128, 128, 128)
image_size_cfg = config.get('data', {}).get('image_size', DEFAULT_IMAGE_SIZE)
if not isinstance(image_size_cfg, (list, tuple)) or len(image_size_cfg) != 3:
print(f"Warning: Invalid image_size in config ({image_size_cfg}). Using default {DEFAULT_IMAGE_SIZE}.")
image_size = DEFAULT_IMAGE_SIZE
else:
image_size = tuple(image_size_cfg)
# --- Model Loading ---
def load_model(cfg):
device = torch.device(cfg.get('gpu', {}).get('device', 'cpu'))
backbone = Backbone()
classifier = Classifier(d_model=2048, num_classes=1) # Binary classification for MCI
model = SingleScanModel(backbone, classifier) # Using BP model for MCI classification
relative_path = cfg.get('infer', {}).get('checkpoints', 'checkpoints/mci_model.pt')
checkpoint_path_abs = os.path.join(APP_DIR, relative_path)
try:
print(f"Loading MCI classification model from: {checkpoint_path_abs}")
checkpoint = torch.load(checkpoint_path_abs, map_location=device, weights_only=False)
state_dict = checkpoint.get('model_state_dict', checkpoint)
model.load_state_dict(state_dict, strict=False)
model.to(device)
model.eval()
print(f"MCI classification model loaded successfully onto {device}")
return model, device
except FileNotFoundError:
print(f"Error: Checkpoint file not found at {checkpoint_path_abs}")
return None, device
except Exception as e:
print(f"Error loading model checkpoint: {e}")
traceback.print_exc()
return None, device
model, device = load_model(config)
# --- Preprocessing Functions (Copied/Adapted from app.py) ---
def bias_field_correction(img_array):
print(" Running N4 Bias Field Correction...")
image = sitk.GetImageFromArray(img_array)
if image.GetPixelID() != sitk.sitkFloat32:
image = sitk.Cast(image, sitk.sitkFloat32)
maskImage = sitk.OtsuThreshold(image, 0, 1, 200)
corrector = sitk.N4BiasFieldCorrectionImageFilter()
numberFittingLevels = 4
max_iters = [min(50 * (2**i), 200) for i in range(numberFittingLevels)]
corrector.SetMaximumNumberOfIterations(max_iters)
corrected_image = corrector.Execute(image, maskImage)
print(" N4 Correction finished.")
return sitk.GetArrayFromImage(corrected_image)
def denoise(volume, kernel_size=3):
print(f" Applying median filter denoising (kernel={kernel_size})...")
return medfilt(volume, kernel_size)
def rescale_intensity(volume, percentils=[0.5, 99.5], bins_num=256):
print(" Rescaling intensity...")
volume_float = volume.astype(np.float32)
try:
t = skimage.filters.threshold_otsu(volume_float, nbins=256)
volume_masked = np.copy(volume_float)
volume_masked[volume_masked < t] = 0
obj_volume = volume_masked[np.where(volume_masked > 0)]
except ValueError:
print(" Otsu failed, skipping background mask.")
obj_volume = volume_float.flatten()
if obj_volume.size == 0:
print(" Warning: No foreground voxels found. Scaling full volume.")
obj_volume = volume_float.flatten()
min_value = np.min(obj_volume)
max_value = np.max(obj_volume)
else:
min_value = np.percentile(obj_volume, percentils[0])
max_value = np.percentile(obj_volume, percentils[1])
denominator = max_value - min_value
if denominator < 1e-6: denominator = 1e-6
output_volume = np.copy(volume_float)
if bins_num == 0:
output_volume = (volume_float - min_value) / denominator
output_volume = np.clip(output_volume, 0.0, 1.0)
else:
output_volume = np.round((volume_float - min_value) / denominator * (bins_num - 1))
output_volume = np.clip(output_volume, 0, bins_num - 1)
return output_volume.astype(np.float32)
def equalize_hist(volume, bins_num=256):
print(" Performing histogram equalization...")
mask = volume > 1e-6
obj_volume = volume[mask]
if obj_volume.size == 0:
print(" Warning: No non-zero voxels. Skipping equalization.")
return volume
hist, bins = np.histogram(obj_volume, bins_num, range=(obj_volume.min(), obj_volume.max()))
cdf = hist.cumsum()
cdf_normalized = (bins_num - 1) * cdf / float(cdf[-1])
equalized_obj_volume = np.interp(obj_volume, bins[:-1], cdf_normalized)
equalized_volume = np.copy(volume)
equalized_volume[mask] = equalized_obj_volume
return equalized_volume.astype(np.float32)
def enhance(img_array, run_bias_correction=True, kernel_size=3, percentils=[0.5, 99.5], bins_num=256, run_equalize_hist=True):
print("Starting enhancement pipeline...")
volume = img_array.astype(np.float32)
try:
if run_bias_correction: volume = bias_field_correction(volume)
volume = denoise(volume, kernel_size)
volume = rescale_intensity(volume, percentils, bins_num)
if run_equalize_hist: volume = equalize_hist(volume, bins_num)
print("Enhancement pipeline finished.")
return volume
except Exception as e:
print(f"Error during enhancement: {e}")
traceback.print_exc()
raise RuntimeError(f"Failed enhancing image: {e}")
def register_image(input_nifti_path, output_nifti_path):
print(f"Registering {input_nifti_path} to {DEFAULT_TEMPLATE_PATH}")
if not all(os.path.exists(p) for p in [PARAMS_RIGID_PATH, DEFAULT_TEMPLATE_PATH]):
raise FileNotFoundError("Elastix parameter or template file not found.")
fixed_image = itk.imread(DEFAULT_TEMPLATE_PATH, itk.F)
moving_image = itk.imread(input_nifti_path, itk.F)
parameter_object = itk.ParameterObject.New()
parameter_object.AddParameterFile(PARAMS_RIGID_PATH)
result_image, _ = itk.elastix_registration_method(fixed_image, moving_image, parameter_object=parameter_object, log_to_console=False)
itk.imwrite(result_image, output_nifti_path)
print(f"Registration output saved to {output_nifti_path}")
def run_enhance_on_file(input_nifti_path, output_nifti_path):
print(f"Running full enhancement on {input_nifti_path}")
img_sitk = sitk.ReadImage(input_nifti_path)
img_array = sitk.GetArrayFromImage(img_sitk)
enhanced_array = enhance(img_array, run_bias_correction=True)
enhanced_img_sitk = sitk.GetImageFromArray(enhanced_array)
enhanced_img_sitk.CopyInformation(img_sitk)
sitk.WriteImage(enhanced_img_sitk, output_nifti_path)
print(f"Enhanced image saved to {output_nifti_path}")
def run_skull_stripping(input_nifti_path, output_dir):
print(f"Running HD-BET skull stripping on {input_nifti_path}")
if run_hd_bet is None: raise RuntimeError("HD-BET module not imported.")
if not os.path.exists(HD_BET_CONFIG_PATH): raise FileNotFoundError(f"HD-BET config not found at {HD_BET_CONFIG_PATH}")
if not os.path.isdir(HD_BET_MODEL_DIR): raise FileNotFoundError(f"HD-BET models not found at {HD_BET_MODEL_DIR}")
base_name = os.path.basename(input_nifti_path).replace(".nii.gz", "").replace(".nii", "")
output_file_path = os.path.join(output_dir, f"{base_name}_bet.nii.gz")
output_mask_path = os.path.join(output_dir, f"{base_name}_bet_mask.nii.gz")
os.makedirs(output_dir, exist_ok=True)
try:
run_hd_bet(input_nifti_path, output_file_path, mode="fast", device='cpu', config_file=HD_BET_CONFIG_PATH, postprocess=False, do_tta=False, keep_mask=True, overwrite=True)
finally:
pass
if not os.path.exists(output_file_path): raise RuntimeError("HD-BET did not produce output file.")
print(f"Skull stripping output saved to {output_file_path}")
return output_file_path, output_mask_path
# --- MONAI Transforms ---
resize_transform = Resized(keys=["image"], spatial_size=image_size)
scale_transform = ScaleIntensityd(keys=["image"], minv=0.0, maxv=1.0)
def preprocess_nifti_for_model(nifti_path):
print(f"Preprocessing NIfTI for model: {nifti_path}")
scan_data = nib.load(nifti_path).get_fdata()
scan_tensor = torch.tensor(scan_data, dtype=torch.float32).unsqueeze(0) # Add C dim
sample = {"image": scan_tensor}
sample_resized = resize_transform(sample)
sample_scaled = scale_transform(sample_resized)
input_tensor = sample_scaled["image"].unsqueeze(0).to(device) # Add B dim
if input_tensor.dim() != 5: raise ValueError(f"Preprocessing resulted in incorrect shape: {input_tensor.shape}")
print(f" Final shape for model: {input_tensor.shape}")
return input_tensor
# --- Saliency Generation ---
def generate_saliency(model_to_use, input_tensor_5d):
if GuidedBackpropSmoothGrad is None: raise ImportError("MONAI visualize components not imported.")
if model_to_use is None: raise ValueError("Model not loaded.")
print("Generating saliency map...")
input_tensor_5d.requires_grad_(True)
visualizer = GuidedBackpropSmoothGrad(model=model_to_use.backbone.to(device), stdev_spread=0.15, n_samples=10, magnitude=True)
try:
with torch.enable_grad():
saliency_map_5d = visualizer(input_tensor_5d.to(device))
input_3d = input_tensor_5d.squeeze().cpu().detach().numpy()
saliency_3d = saliency_map_5d.squeeze().cpu().detach().numpy()
print("Saliency map generated.")
return input_3d, saliency_3d
except Exception as e:
print(f"Error during saliency map generation: {e}")
traceback.print_exc()
return None, None
finally:
input_tensor_5d.requires_grad_(False)
# --- Plotting Function (Returns NumPy arrays for Gradio) ---
def create_slice_plots(mri_data_3d, saliency_data_3d, slice_index):
print(f" Generating plots for slice index: {slice_index}")
if mri_data_3d is None or saliency_data_3d is None: return None, None, None
# Change from the third dimension (axis 2, sagittal) to the first dimension (axis 0, axial)
if not (0 <= slice_index < mri_data_3d.shape[0]):
print(f" Error: Slice index {slice_index} out of bounds (0-{mri_data_3d.shape[0]-1}).")
return None, None, None
# Function to save plot to NumPy array
def save_plot_to_numpy(fig):
with io.BytesIO() as buf:
fig.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, dpi=75) # Adjust DPI as needed
plt.close(fig)
buf.seek(0)
img_arr = plt.imread(buf, format='png')
# Return RGBA array, can be simplified if only grayscale needed for input
return (img_arr * 255).astype(np.uint8)
try:
# Extract axial slice instead of sagittal
mri_slice = mri_data_3d[slice_index, :, :]
saliency_slice_orig = saliency_data_3d[slice_index, :, :]
# Normalize MRI Slice (using volume stats)
p1_vol, p99_vol = np.percentile(mri_data_3d, (1, 99))
mri_norm_denom = max(p99_vol - p1_vol, 1e-6)
mri_slice_norm = np.clip((mri_slice - p1_vol) / mri_norm_denom, 0, 1)
# Process Saliency Slice
saliency_slice = np.copy(saliency_slice_orig)
saliency_slice[saliency_slice < 0] = 0
saliency_slice_blurred = cv2.GaussianBlur(saliency_slice, (15, 15), 0)
s_max_vol = max(np.max(saliency_data_3d[saliency_data_3d >= 0]), 1e-6)
saliency_slice_norm = saliency_slice_blurred / s_max_vol
saliency_slice_thresholded = np.where(saliency_slice_norm > 0.0, saliency_slice_norm, 0) # Threshold slightly > 0
# Plot 1: Input Slice
fig1, ax1 = plt.subplots(figsize=(6, 6))
ax1.imshow(mri_slice_norm, cmap='gray', interpolation='none', origin='lower')
ax1.axis('off')
input_plot_np = save_plot_to_numpy(fig1)
# Plot 2: Saliency Heatmap
fig2, ax2 = plt.subplots(figsize=(6, 6))
ax2.imshow(saliency_slice_thresholded, cmap='magma', interpolation='none', origin='lower', vmin=0) # Set vmin
ax2.axis('off')
heatmap_plot_np = save_plot_to_numpy(fig2)
# Plot 3: Overlay
fig3, ax3 = plt.subplots(figsize=(6, 6))
ax3.imshow(mri_slice_norm, cmap='gray', interpolation='none', origin='lower')
if np.max(saliency_slice_thresholded) > 0:
ax3.contour(saliency_slice_thresholded, cmap='magma', origin='lower', linewidths=1.0, levels=np.linspace(saliency_slice_thresholded.min(), saliency_slice_thresholded.max(), 5)) # Adjust levels
ax3.axis('off')
overlay_plot_np = save_plot_to_numpy(fig3)
print(f" Generated numpy plots successfully for slice {slice_index}.")
return input_plot_np, heatmap_plot_np, overlay_plot_np
except Exception as e:
print(f"Error generating numpy plots for slice {slice_index}: {e}")
traceback.print_exc()
return None, None, None
# Add this function after the create_slice_plots function
def create_probability_gauge(probability):
"""
Creates a gauge visualization for the MCI probability.
Args:
probability (float): A value between 0 and 1 representing the MCI probability.
Returns:
numpy.ndarray: A numpy array containing the gauge visualization image.
"""
# Create a figure with a polar projection
fig = plt.figure(figsize=(8, 4))
ax = fig.add_subplot(111, polar=True)
# Set the min and max angles for the gauge (in radians)
# -pi/2 to pi/2 creates a half-circle (180 degrees)
theta_min = -np.pi/2
theta_max = np.pi/2
# Calculate the angle for the needle based on probability (0 to 1)
needle_angle = theta_min + probability * (theta_max - theta_min)
# Create a color gradient for the gauge background
cmap = plt.cm.RdYlGn_r # Red-Yellow-Green colormap (reversed)
# Draw the gauge background
theta = np.linspace(theta_min, theta_max, 100)
radii = np.ones_like(theta)
# Create color array for the gauge segments
norm = plt.Normalize(0, 1)
colors = cmap(np.linspace(0, 1, len(theta)))
# Draw colored bars for the gauge
width = (theta_max - theta_min) / len(theta)
bars = ax.bar(theta, radii, width=width, bottom=0.0, alpha=0.8, linewidth=0)
# Set the color for each bar
for bar, color in zip(bars, colors):
bar.set_facecolor(color)
# Add the needle
needle_length = 0.9
ax.annotate('', xy=(needle_angle, needle_length), xytext=(needle_angle, 0),
arrowprops=dict(arrowstyle='wedge', color='black', lw=2))
# Add boundary markers and labels - move them lower by adjusting y position (1.1 -> 1.3)
ax.text(theta_min, 2.2, 'Healthy Control', ha='left', va='center', fontsize=12)
ax.text(theta_max, 1.3, 'MCI', ha='right', va='center', fontsize=12)
# Add the probability text below the gauge
prob_text = f"Probability: {probability:.2f}"
fig.text(0.5, 0.15, prob_text, ha='center', va='center', fontsize=14, fontweight='bold')
# Set the limits and remove unnecessary elements
ax.set_ylim(0, 1.4) # Increased the upper limit to accommodate the lower labels
ax.set_theta_zero_location('N') # 0 at the top
ax.set_theta_direction(-1) # clockwise
ax.set_thetagrids([]) # Remove angle labels
ax.grid(False) # Remove grid
ax.set_rgrids([]) # Remove radial labels
ax.spines['polar'].set_visible(False) # Remove the outer circle
# Convert figure to numpy array
with io.BytesIO() as buf:
fig.savefig(buf, format='png', bbox_inches='tight', pad_inches=0.1, dpi=100)
plt.close(fig)
buf.seek(0)
img_arr = plt.imread(buf, format='png')
return (img_arr * 255).astype(np.uint8)
# --- Gradio Processing Function ---
def process_scan(file_type, uploaded_file, run_preprocess, generate_saliency_flag):
if model is None:
raise gr.Error("Model is not loaded. Cannot perform prediction.")
if uploaded_file is None:
raise gr.Error("No file uploaded.")
temp_dir = tempfile.mkdtemp()
print(f"Created temp directory: {temp_dir}")
nifti_for_preprocessing_path = None
error_message = None
prediction_text = "Processing..."
# Initialize outputs to None or placeholder images/values
input_slice_img, heatmap_slice_img, overlay_slice_img = None, None, None
probability_gauge = None
saliency_state = {"input_path": None, "saliency_path": None, "num_slices": 0}
slider_update = gr.Slider(value=0, minimum=0, maximum=1, visible=False) # Initially hidden, use max=1 to avoid log(0) error
try:
# --- Handle Upload and DICOM Conversion ---
file_path = uploaded_file.name # Get path from Gradio file object
filename = os.path.basename(file_path)
print(f"Processing '{filename}' (type: {file_type})")
if file_type == 'NIfTI':
# Check if the filename ends with either .nii or .nii.gz
if not (filename.lower().endswith('.nii.gz') or filename.lower().endswith('.nii')):
raise gr.Error("Invalid NIfTI file. Please upload .nii or .nii.gz")
# Define the destination path (always .nii.gz for consistency)
dest_path = os.path.join(temp_dir, "uploaded_scan.nii.gz")
nifti_for_preprocessing_path = dest_path
# Check if the uploaded file is uncompressed .nii
if filename.lower().endswith('.nii') and not filename.lower().endswith('.nii.gz'):
print(f"Detected uncompressed .nii file: {filename}. Compressing to {dest_path}")
try:
# Load the uncompressed .nii file
img = nib.load(file_path)
# Save it as a compressed .nii.gz file
nib.save(img, dest_path)
print(f"Successfully compressed and saved to: {dest_path}")
except Exception as e:
raise gr.Error(f"Failed to load or compress .nii file: {e}")
else:
# If it's already .nii.gz, just copy it
print(f"Copying compressed NIfTI {filename} to: {dest_path}")
shutil.copy(file_path, dest_path)
# nifti_for_preprocessing_path is already set to dest_path
# print(f"NIfTI path for preprocessing: {nifti_for_preprocessing_path}") # Redundant logging
elif file_type == 'DICOM (zip)':
if not filename.endswith('.zip'):
raise gr.Error("Invalid DICOM file. Please upload a .zip archive.")
uploaded_zip_path = os.path.join(temp_dir, "dicom_files.zip")
shutil.copy(file_path, uploaded_zip_path)
print(f"Copied DICOM zip to: {uploaded_zip_path}")
dicom_input_dir = os.path.join(temp_dir, "dicom_input")
nifti_output_dir = os.path.join(temp_dir, "nifti_output")
os.makedirs(dicom_input_dir, exist_ok=True)
os.makedirs(nifti_output_dir, exist_ok=True)
try:
shutil.unpack_archive(uploaded_zip_path, dicom_input_dir)
print("Unzip successful.")
except Exception as e:
raise gr.Error(f"Error unzipping DICOM file: {e}")
try:
dicom2nifti.convert_directory(dicom_input_dir, nifti_output_dir, compression=True, reorient=True)
nifti_files = [f for f in os.listdir(nifti_output_dir) if f.endswith('.nii.gz')]
if not nifti_files: raise RuntimeError("dicom2nifti did not produce a .nii.gz file.")
nifti_for_preprocessing_path = os.path.join(nifti_output_dir, nifti_files[0])
print(f"DICOM conversion successful. NIfTI: {nifti_for_preprocessing_path}")
except Exception as e:
raise gr.Error(f"Error converting DICOM to NIfTI: {e}")
else:
raise gr.Error("Invalid file type selected.")
if not nifti_for_preprocessing_path or not os.path.exists(nifti_for_preprocessing_path):
raise gr.Error("Could not find the NIfTI file after initial processing.")
# --- Optional Preprocessing ---
nifti_to_predict_path = nifti_for_preprocessing_path
if run_preprocess:
print("--- Running Optional Preprocessing Pipeline ---")
try:
registered_path = os.path.join(temp_dir, "registered.nii.gz")
register_image(nifti_for_preprocessing_path, registered_path)
enhanced_path = os.path.join(temp_dir, "enhanced.nii.gz")
run_enhance_on_file(registered_path, enhanced_path)
skullstrip_output_dir = os.path.join(temp_dir, "skullstripped")
skullstripped_path, _ = run_skull_stripping(enhanced_path, skullstrip_output_dir)
nifti_to_predict_path = skullstripped_path
print("--- Optional Preprocessing Pipeline Complete ---")
except Exception as e:
raise gr.Error(f"Error during preprocessing: {e}")
else:
print("--- Skipping Optional Preprocessing Pipeline ---")
# --- Prediction (Changed for MCI Classification) ---
input_tensor_5d = preprocess_nifti_for_model(nifti_to_predict_path)
print("Performing MCI classification prediction...")
with torch.no_grad():
try:
output = model(input_tensor_5d)
# Convert output to probability
if isinstance(output, torch.Tensor):
logit = output.item()
else:
logit = output
# Apply sigmoid to get probability
probability = torch.sigmoid(torch.tensor(logit)).item()
predicted_class = 1 if probability > 0.5 else 0
class_label = "MCI" if predicted_class == 1 else "Healthy Control"
# Create the probability gauge visualization
probability_gauge = create_probability_gauge(probability)
# Format prediction text for classification
prediction_text = f"Prediction: {class_label} "
except Exception as pred_error:
print(f"Error during prediction: {pred_error}")
traceback.print_exc()
raise gr.Error(f"Failed to make prediction: {pred_error}")
print(prediction_text)
# --- Saliency Map Generation ---
if generate_saliency_flag:
print("--- Generating Saliency Data ---")
try:
input_3d, saliency_3d = generate_saliency(model, input_tensor_5d)
if input_3d is not None and saliency_3d is not None:
num_slices = input_3d.shape[0] # Using axial slices now (first dimension)
center_slice_index = num_slices // 2
# Save numpy arrays to the temp dir for the slider callback
unique_id = str(uuid.uuid4())
input_array_path = os.path.join(temp_dir, f"{unique_id}_input.npy")
saliency_array_path = os.path.join(temp_dir, f"{unique_id}_saliency.npy")
np.save(input_array_path, input_3d)
np.save(saliency_array_path, saliency_3d)
print(f"Saved input array: {input_array_path}")
print(f"Saved saliency array: {saliency_array_path}")
# Generate initial plots for the center slice
input_slice_img, heatmap_slice_img, overlay_slice_img = create_slice_plots(input_3d, saliency_3d, center_slice_index)
# Update state for the slider callback
saliency_state = {
"input_path": input_array_path,
"saliency_path": saliency_array_path,
"num_slices": num_slices
}
# Update and show the slider
slider_update = gr.Slider(value=center_slice_index, minimum=0, maximum=num_slices - 1, step=1, label="Select Slice", visible=True)
print("--- Saliency Generated and Initial Plot Created ---")
else:
error_message = "Saliency map generation failed."
print(f"Warning: {error_message}")
except ImportError as e:
error_message = f"Cannot generate saliency: {e}"
print(f"Warning: {error_message}")
except Exception as e:
error_message = f"Error during saliency processing: {e}"
traceback.print_exc()
print(f"Warning: {error_message}")
except Exception as e:
print(f"Error in process_scan: {e}")
traceback.print_exc()
# Use gr.Warning for non-fatal errors shown to user
if error_message: # Prepend specific error if available
gr.Warning(f"{error_message}. General error: {e}")
else:
gr.Warning(f"An error occurred: {e}")
# Return default/error states for outputs
return "Error during processing", None, None, None, None, gr.Slider(visible=False), {"input_path": None, "saliency_path": None, "num_slices": 0}
finally:
# Optional: Schedule cleanup of the temp_dir if files aren't needed long-term
# Be cautious if files ARE needed by slider state. Gradio might handle this?
# shutil.rmtree(temp_dir, ignore_errors=True)
# print(f"Cleaned up temp directory: {temp_dir}") # <--- Defer cleanup
pass
# Return results including the probability gauge
return prediction_text, input_slice_img, heatmap_slice_img, overlay_slice_img, probability_gauge, slider_update, saliency_state
# --- Gradio Slider Update Function ---
def update_slice_viewer(slice_index, current_state):
input_path = current_state.get("input_path")
saliency_path = current_state.get("saliency_path")
if not input_path or not saliency_path or not os.path.exists(input_path) or not os.path.exists(saliency_path):
print(f"Warning: Cannot update slice viewer. Missing or invalid numpy array paths in state: {current_state}")
# Return None or placeholder images to indicate error
return None, None, None
try:
input_3d = np.load(input_path)
saliency_3d = np.load(saliency_path)
num_slices = input_3d.shape[0] # Using axial slices (first dimension)
# Ensure slice_index is valid (Gradio slider should handle bounds, but double-check)
slice_index = int(slice_index)
if not (0 <= slice_index < num_slices):
print(f"Warning: Invalid slice index {slice_index} received by update function.")
return None, None, None # Or return previous plots?
# Generate new plots for the selected slice
input_slice_img, heatmap_slice_img, overlay_slice_img = create_slice_plots(input_3d, saliency_3d, slice_index)
return input_slice_img, heatmap_slice_img, overlay_slice_img
except Exception as e:
print(f"Error updating slice viewer for index {slice_index}: {e}")
traceback.print_exc()
# Return None or indicate error
return None, None, None
# --- Build Gradio Interface ---
with gr.Blocks(css="""
#header-row {
min-height: 150px;
align-items: center;
}
.logo-img img {
height: 150px;
object-fit: contain;
}
.probability-gauge {
display: flex;
justify-content: center;
margin-top: 1rem;
}
""") as demo:
# Header Row with Logos and Title
with gr.Row(elem_id="header-row"):
with gr.Column(scale=1):
gr.Image(os.path.join(APP_DIR, "static/images/kannlab.png"),
show_label=False, interactive=False,
show_download_button=False,
container=False,
elem_classes=["logo-img"])
with gr.Column(scale=3):
gr.Markdown(
"<h1 style='text-align: center; margin-bottom: 2.5rem'>"
"BrainIAC: MCI Classification"
"</h1>"
)
with gr.Column(scale=1):
gr.Image(os.path.join(APP_DIR, "static/images/brainiac.jpeg"),
show_label=False, interactive=False,
show_download_button=False,
container=False,
elem_classes=["logo-img"])
# --- Add model description section ---
with gr.Accordion("ℹ️ Model Details and Usage Guide", open=False):
gr.Markdown("""
### 🧠 BrainIAC: MCI Classification
**Model Description**
A 3D ResNet50 model trained to predict Mild Cognitive Impairment (MCI) from T1-weighted MRI scans.
**Training Dataset**
- **Subjects**: Trained on T1-weighted MRI scans from subjects with MCI and healthy controls
- **Imaging Modality**: T1-weighted MRI
- **Preprocessing**: Registration to MNI, N4 bias correction, histogram equalization, skull stripping
**Input**
- Format: NIfTI or zipped DICOM
- Required sequence: T1w (3D)
**Output**
- Binary classification: MCI or Healthy Control
- Probability score for MCI
**Intended Use**
- Research use only!
**NOTE**
- Not validated on T2, FLAIR, DWI or other sequences
- Not validated on pathological cases beyond MCI
- Upload PHI data at own risk!
- The model is hosted on a cloud-based CPU instance.
- The data is not stored, shared or collected for any purpose!
""")
# Use gr.State to store paths to numpy arrays for the slider callback
saliency_state = gr.State({"input_path": None, "saliency_path": None, "num_slices": 0})
# Main Content Row (Controls Left, Output Right)
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### Controls")
file_type = gr.Radio(["NIfTI", "DICOM (zip)"], label="Select Input File Type", value="NIfTI")
scan_file = gr.File(label="Upload Scan File")
run_preprocess = gr.Checkbox(label="Run Preprocessing Pipeline ", value=False)
generate_saliency_checkbox = gr.Checkbox(label="Generate Saliency Maps ", value=True)
submit_btn = gr.Button("Classify MCI", variant="primary")
with gr.Column(scale=3):
with gr.Group():
gr.Markdown("### Classification Result")
prediction_output = gr.Label(label="Classification Result")
# Add the probability gauge visualization
gr.Markdown("<p style='text-align: center;'>MCI Probability</p>")
probability_gauge = gr.Image(label="Probability Gauge", type="numpy", show_label=False, elem_classes=["probability-gauge"])
with gr.Group():
gr.Markdown("### Saliency Map Viewer (Axial Slice)")
slice_slider = gr.Slider(label="Select Slice", minimum=0, maximum=0, step=1, value=0, visible=False)
with gr.Row():
with gr.Column():
gr.Markdown("<p style='text-align: center;'>Input Slice</p>")
input_slice_img = gr.Image(label="Input Slice", type="numpy", show_label=False)
with gr.Column():
gr.Markdown("<p style='text-align: center;'>Saliency Heatmap</p>")
heatmap_slice_img = gr.Image(label="Saliency Heatmap", type="numpy", show_label=False)
with gr.Column():
gr.Markdown("<p style='text-align: center;'>Overlay</p>")
overlay_slice_img = gr.Image(label="Overlay", type="numpy", show_label=False)
# --- Wire Components ---
submit_btn.click(
fn=process_scan,
inputs=[file_type, scan_file, run_preprocess, generate_saliency_checkbox],
outputs=[prediction_output, input_slice_img, heatmap_slice_img, overlay_slice_img, probability_gauge, slice_slider, saliency_state]
)
slice_slider.change(
fn=update_slice_viewer,
inputs=[slice_slider, saliency_state],
outputs=[input_slice_img, heatmap_slice_img, overlay_slice_img]
)
# --- Launch the App ---
if __name__ == "__main__":
if model is None:
print("ERROR: Model failed to load. Gradio app cannot start.")
else:
print("Launching Gradio Interface...")
demo.launch(server_name="0.0.0.0", server_port=7860, debug=False, share=False)
|