import torch.nn as nn from monai.networks.nets import resnet101, resnet50, resnet18, ViT import torch ## resnet50 architecture, FC layers converted to I class ResNet50_3D(nn.Module): def __init__(self): super(ResNet50_3D, self).__init__() resnet = resnet50(pretrained=False) # assuming you're not using a pretrained model resnet.conv1 = nn.Conv3d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) hidden_dim = resnet.fc.in_features self.backbone = resnet self.backbone.fc = nn.Identity() def forward(self, x): x = self.backbone(x) return x class Classifier(nn.Module): """ Classifier class with FC layer and single output neuron """ def __init__(self, d_model, hidden_dim=1024, num_classes=1): super(Classifier, self).__init__() self.fc = nn.Linear(d_model, num_classes) def forward(self, x): x = self.fc(x) return x class Backbone(nn.Module): """ ResNet 3D Backbone""" def __init__(self): super(Backbone, self).__init__() resnet = resnet50(pretrained=False) # assuming you're not using a pretrained model resnet.conv1 = nn.Conv3d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) hidden_dim = resnet.fc.in_features self.backbone = resnet self.backbone.fc = nn.Identity() def forward(self, x): x = self.backbone(x) return x class SingleScanModel(nn.Module): """ End to end model with backbone and classifier""" def __init__(self, backbone, classifier): super(SingleScanModel, self).__init__() self.backbone = backbone self.classifier = classifier self.dropout = nn.Dropout(p=0.2) def forward(self, x): x = self.backbone(x) x = self.dropout(x) x = self.classifier(x) return x class SingleScanModelBP(nn.Module): """ End to end model with backbone and classifier that takes 2 input scans at once""" def __init__(self, backbone, classifier): super(SingleScanModelBP, self).__init__() self.backbone = backbone self.classifier = classifier self.dropout = nn.Dropout(p=0.2) self.bilinear_pooling = nn.Bilinear(in1_features=2048, in2_features=2048, out_features=512) def forward(self, x): x = [self.backbone(scan) for scan in x.split(1, dim=1)] features = torch.stack(x, dim=1).squeeze(2) merged_features = torch.mean(features, dim=1) # Shape: (batch_size, feature_dim) merged_features = self.dropout(merged_features) output = self.classifier(merged_features) return output