Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2023 The HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Processor class for Llava. | |
| """ | |
| import itertools | |
| from typing import List, Optional, Union | |
| import PIL.Image | |
| import numpy as np | |
| from transformers import AutoTokenizer | |
| from transformers.feature_extraction_utils import BatchFeature | |
| from transformers.image_utils import ( | |
| ImageInput, | |
| make_list_of_images, | |
| valid_images, | |
| infer_channel_dimension_format, | |
| to_numpy_array, | |
| get_image_size, | |
| ChannelDimension, | |
| ) | |
| from transformers.image_processing_utils import get_size_dict | |
| from transformers.image_utils import PILImageResampling | |
| from transformers.processing_utils import ProcessorMixin | |
| from transformers.image_transforms import resize, pad, PaddingMode, to_channel_dimension_format, get_resize_output_image_size | |
| from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy | |
| from transformers.utils import TensorType | |
| class PllavaProcessor(ProcessorMixin): | |
| r""" | |
| Constructs a Llava processor which wraps a Llava image processor and a Llava tokenizer into a single processor. | |
| [`LlavaProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the | |
| [`~LlavaProcessor.__call__`] and [`~LlavaProcessor.decode`] for more information. | |
| Args: | |
| image_processor ([`CLIPImageProcessor`], *optional*): | |
| The image processor is a required input. | |
| tokenizer ([`LlamaTokenizerFast`], *optional*): | |
| The tokenizer is a required input. | |
| """ | |
| attributes = ["image_processor", "tokenizer"] | |
| image_processor_class = "CLIPImageProcessor" | |
| tokenizer_class = "AutoTokenizer" | |
| def __init__(self, image_processor=None, tokenizer=None, | |
| shortest_edge=336, | |
| longest_edge=762, | |
| center_pad=False): | |
| self.shortest_edge = shortest_edge | |
| self.longest_edge = longest_edge | |
| self.center_pad = center_pad | |
| super().__init__(image_processor, tokenizer) | |
| def resize_crop_longshort(self, videos: list[list[np.ndarray]], input_data_format): | |
| video_spatial_sizes = [get_image_size(images[0], input_data_format) for images in videos] | |
| long_short_rates = [max(size) / min(size) for size in video_spatial_sizes] | |
| min_long_short_rate = min(long_short_rates) | |
| min_long_short_video_idx = long_short_rates.index(min_long_short_rate) | |
| clip_resolution = self.image_processor.size['shortest_edge'] | |
| out_video_spatial_size = video_spatial_sizes[min_long_short_video_idx] | |
| out_videos_short_edge = max(min(size) for size in video_spatial_sizes) | |
| resize_longest_edge = max(max(size) for size in video_spatial_sizes) | |
| resize_longest_edge = min(640, resize_longest_edge) | |
| out_videos_short_edge = min(out_videos_short_edge, int(resize_longest_edge / min_long_short_rate)) | |
| out_videos_short_edge = max(out_videos_short_edge, clip_resolution) | |
| if out_video_spatial_size[0] > out_video_spatial_size[1]: # h > w: | |
| out_video_spatial_size = (int(out_videos_short_edge * min_long_short_rate), out_videos_short_edge ) | |
| else: | |
| out_video_spatial_size = ( out_videos_short_edge, int(out_videos_short_edge * min_long_short_rate) ) | |
| videos = [ | |
| [self.resize(frame, input_data_format=input_data_format, shortest_edge=out_videos_short_edge, longest_edge=9999) for frame in frames] | |
| for frames in videos | |
| ] | |
| out_videos = [] | |
| for frames in videos: | |
| out_frames = [] | |
| video_spatial_size = get_image_size(frames[0], input_data_format) | |
| assert min(video_spatial_size) == out_videos_short_edge | |
| overhead = (max(video_spatial_size) - max(out_video_spatial_size)) // 2 | |
| slice_start, slice_end = overhead // 2, overhead // 2 + max(out_video_spatial_size) | |
| hslice, wslice = (slice(slice_start, slice_end), slice(None, None)) if video_spatial_size[0] > video_spatial_size[1] \ | |
| else (slice(None, None), slice(slice_start, slice_end)) # h > w | |
| for frame in frames: | |
| if input_data_format == ChannelDimension.FIRST: | |
| out_frames.append(frame[..., hslice, wslice]) | |
| elif input_data_format == ChannelDimension.LAST: | |
| out_frames.append(frame[..., hslice, wslice, :]) | |
| out_videos.append(out_frames) | |
| return out_videos | |
| def _compute_num_blocks_and_overlaps(input_shape, resolution): | |
| input_shape = np.array(input_shape) | |
| resolution = np.array(resolution) | |
| assert input_shape.max() >= resolution | |
| num_blocks = np.ceil(input_shape / resolution).astype(np.int32).tolist() | |
| overlaps = [0 if size % resolution==0 | |
| else int(np.floor((resolution - size % resolution) / (num_block - 1))) for num_block, size in zip(num_blocks, input_shape)] | |
| return num_blocks, overlaps | |
| def resize( | |
| self, | |
| image: np.ndarray, | |
| resample: PILImageResampling = PILImageResampling.BICUBIC, # type: ignore | |
| data_format: Optional[Union[str, ChannelDimension]] = None, | |
| input_data_format: Optional[Union[str, ChannelDimension]] = None, | |
| shortest_edge: int = None, | |
| longest_edge: int = None, | |
| **kwargs, | |
| ) -> np.ndarray: | |
| """ | |
| Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge | |
| resized to keep the input aspect ratio. | |
| Args: | |
| image (`np.ndarray`): | |
| Image to resize. | |
| size (`Dict[str, int]`): | |
| Size of the output image. | |
| resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): | |
| Resampling filter to use when resiizing the image. | |
| data_format (`str` or `ChannelDimension`, *optional*): | |
| The channel dimension format of the image. If not provided, it will be the same as the input image. | |
| input_data_format (`ChannelDimension` or `str`, *optional*): | |
| The channel dimension format of the input image. If not provided, it will be inferred. | |
| """ | |
| shortest_edge = getattr(self, 'shortest_edge', None) if shortest_edge is None else shortest_edge | |
| longest_edge = getattr(self, 'longest_edge', None) if longest_edge is None else longest_edge | |
| default_to_square = False | |
| output_size = get_resize_output_image_size( | |
| image, | |
| size=shortest_edge, | |
| default_to_square=default_to_square, | |
| max_size=longest_edge, | |
| input_data_format=input_data_format, | |
| ) | |
| clip_resolution = self.image_processor.size['shortest_edge'] | |
| if min(output_size) < clip_resolution: | |
| output_size = get_resize_output_image_size( | |
| image, | |
| size=shortest_edge, | |
| default_to_square=default_to_square, | |
| input_data_format=input_data_format, | |
| ) | |
| return resize( | |
| image, | |
| size=output_size, | |
| resample=resample, | |
| data_format=data_format, | |
| input_data_format=input_data_format, | |
| **kwargs, | |
| ) | |
| def __call__( | |
| self, | |
| text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, | |
| images: ImageInput = None, | |
| center_pad = None, | |
| padding: Union[bool, str, PaddingStrategy] = False, | |
| truncation: Union[bool, str, TruncationStrategy] = None, | |
| max_length=None, | |
| return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, | |
| ) -> BatchFeature: | |
| """ | |
| Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` | |
| and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode | |
| the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to | |
| CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring | |
| of the above two methods for more information. | |
| Args: | |
| text (`str`, `List[str]`, `List[List[str]]`): | |
| The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings | |
| (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set | |
| `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). | |
| images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): | |
| The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch | |
| tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a | |
| number of channels, H and W are image height and width. | |
| padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): | |
| Select a strategy to pad the returned sequences (according to the model's padding side and padding | |
| index) among: | |
| - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | |
| sequence if provided). | |
| - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum | |
| acceptable input length for the model if that argument is not provided. | |
| - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different | |
| lengths). | |
| max_length (`int`, *optional*): | |
| Maximum length of the returned list and optionally padding length (see above). | |
| truncation (`bool`, *optional*): | |
| Activates truncation to cut input sequences longer than `max_length` to `max_length`. | |
| return_tensors (`str` or [`~utils.TensorType`], *optional*): | |
| If set, will return tensors of a particular framework. Acceptable values are: | |
| - `'tf'`: Return TensorFlow `tf.constant` objects. | |
| - `'pt'`: Return PyTorch `torch.Tensor` objects. | |
| - `'np'`: Return NumPy `np.ndarray` objects. | |
| - `'jax'`: Return JAX `jnp.ndarray` objects. | |
| Returns: | |
| [`BatchFeature`]: A [`BatchFeature`] with the following fields: | |
| - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. | |
| - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when | |
| `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not | |
| `None`). | |
| - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. | |
| """ | |
| data=dict() | |
| if images is not None: | |
| if isinstance(images, list) and isinstance(images[0], PIL.Image.Image): | |
| videos = [images] # one video | |
| else: | |
| videos = images | |
| pixel_values_list = [] | |
| videos = [[to_numpy_array(image) for image in make_list_of_images(images)] for images in videos] | |
| # images = [self.resize(image, ) if min(get_image_size(image, input_data_format)) < clip_resolution else image for image in images] | |
| input_data_format = infer_channel_dimension_format(videos[0][0]) | |
| videos = self.resize_crop_longshort(videos, input_data_format) | |
| for images in videos: | |
| if not valid_images(images): | |
| raise ValueError( | |
| "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " | |
| "torch.Tensor, tf.Tensor or jax.ndarray." | |
| ) | |
| center_pad = center_pad if center_pad is not None else self.center_pad | |
| if center_pad: | |
| images = [self.pad_to_square(image, 0, input_data_format, input_data_format) for image in images] | |
| pixel_values = self.image_processor(images, return_tensors='np')["pixel_values"] | |
| pixel_values_list.append(pixel_values) | |
| pixel_values = np.concatenate(pixel_values_list) | |
| data.update(pixel_values=pixel_values) | |
| else: | |
| data.update(pixel_values = None) | |
| if text is not None: | |
| text_inputs = self.tokenizer( | |
| text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length | |
| ) | |
| data.update(**text_inputs) | |
| return BatchFeature(data, tensor_type=return_tensors) | |
| # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama | |
| def batch_decode(self, *args, **kwargs): | |
| """ | |
| This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please | |
| refer to the docstring of this method for more information. | |
| """ | |
| return self.tokenizer.batch_decode(*args, **kwargs) | |
| # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama | |
| def decode(self, *args, **kwargs): | |
| """ | |
| This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to | |
| the docstring of this method for more information. | |
| """ | |
| return self.tokenizer.decode(*args, **kwargs) | |
| # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names | |
| def model_input_names(self): | |
| tokenizer_input_names = self.tokenizer.model_input_names | |
| image_processor_input_names = self.image_processor.model_input_names | |
| return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) | |