Spaces:
Runtime error
Runtime error
| """ | |
| Modified from https://github.com/m-bain/frozen-in-time/blob/22a91d78405ec6032fdf521ae1ff5573358e632f/base/base_dataset.py | |
| """ | |
| import random | |
| import io | |
| import os | |
| import av | |
| import cv2 | |
| import decord | |
| import imageio | |
| from decord import VideoReader | |
| # from dataloader import KVReader | |
| import torch | |
| import numpy as np | |
| import math | |
| # import tensorflow as tf | |
| decord.bridge.set_bridge("torch") | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| def pts_to_secs(pts: int, time_base: float, start_pts: int) -> float: | |
| """ | |
| Converts a present time with the given time base and start_pts offset to seconds. | |
| Returns: | |
| time_in_seconds (float): The corresponding time in seconds. | |
| https://github.com/facebookresearch/pytorchvideo/blob/main/pytorchvideo/data/utils.py#L54-L64 | |
| """ | |
| if pts == math.inf: | |
| return math.inf | |
| return int(pts - start_pts) * time_base | |
| def get_pyav_video_duration(video_reader): | |
| video_stream = video_reader.streams.video[0] | |
| video_duration = pts_to_secs( | |
| video_stream.duration, | |
| video_stream.time_base, | |
| video_stream.start_time | |
| ) | |
| return float(video_duration) | |
| def get_frame_indices_by_fps(): | |
| pass | |
| def get_frame_indices(num_frames, vlen, sample='rand', fix_start=None, input_fps=1, max_num_frames=-1): | |
| if sample in ["rand", "middle"]: # uniform sampling | |
| acc_samples = min(num_frames, vlen) | |
| # split the video into `acc_samples` intervals, and sample from each interval. | |
| intervals = np.linspace(start=0, stop=vlen, num=acc_samples + 1).astype(int) | |
| ranges = [] | |
| for idx, interv in enumerate(intervals[:-1]): | |
| ranges.append((interv, intervals[idx + 1] - 1)) | |
| if sample == 'rand': | |
| try: | |
| frame_indices = [random.choice(range(x[0], x[1])) for x in ranges] | |
| except: | |
| frame_indices = np.random.permutation(vlen)[:acc_samples] | |
| frame_indices.sort() | |
| frame_indices = list(frame_indices) | |
| elif fix_start is not None: | |
| frame_indices = [x[0] + fix_start for x in ranges] | |
| elif sample == 'middle': | |
| frame_indices = [(x[0] + x[1]) // 2 for x in ranges] | |
| else: | |
| raise NotImplementedError | |
| if len(frame_indices) < num_frames: # padded with last frame | |
| padded_frame_indices = [frame_indices[-1]] * num_frames | |
| padded_frame_indices[:len(frame_indices)] = frame_indices | |
| frame_indices = padded_frame_indices | |
| elif "fps" in sample: # fps0.5, sequentially sample frames at 0.5 fps | |
| output_fps = float(sample[3:]) | |
| duration = float(vlen) / input_fps | |
| delta = 1 / output_fps # gap between frames, this is also the clip length each frame represents | |
| frame_seconds = np.arange(0 + delta / 2, duration + delta / 2, delta) | |
| frame_indices = np.around(frame_seconds * input_fps).astype(int) | |
| frame_indices = [e for e in frame_indices if e < vlen] | |
| if max_num_frames > 0 and len(frame_indices) > max_num_frames: | |
| frame_indices = frame_indices[:max_num_frames] | |
| # frame_indices = np.linspace(0 + delta / 2, duration + delta / 2, endpoint=False, num=max_num_frames) | |
| else: | |
| raise ValueError | |
| return frame_indices | |
| def read_frames_av( | |
| video_path, num_frames, sample='rand', fix_start=None, | |
| max_num_frames=-1, client=None, clip=None, | |
| ): | |
| reader = av.open(video_path) | |
| frames = [torch.from_numpy(f.to_rgb().to_ndarray()) for f in reader.decode(video=0)] | |
| vlen = len(frames) | |
| duration = get_pyav_video_duration(reader) | |
| fps = vlen / float(duration) | |
| frame_indices = get_frame_indices( | |
| num_frames, vlen, sample=sample, fix_start=fix_start, | |
| input_fps=fps, max_num_frames=max_num_frames | |
| ) | |
| frames = torch.stack([frames[idx] for idx in frame_indices]) # (T, H, W, C), torch.uint8 | |
| frames = frames.permute(0, 3, 1, 2) # (T, C, H, W), torch.uint8 | |
| return frames, frame_indices, fps | |
| def read_frames_gif( | |
| video_path, num_frames, sample='rand', fix_start=None, | |
| max_num_frames=-1, client=None, clip=None, | |
| ): | |
| if video_path.startswith('s3') or video_path.startswith('p2'): | |
| video_bytes = client.get(video_path) | |
| gif = imageio.get_reader(io.BytesIO(video_bytes)) | |
| else: | |
| gif = imageio.get_reader(video_path) | |
| vlen = len(gif) | |
| frame_indices = get_frame_indices( | |
| num_frames, vlen, sample=sample, fix_start=fix_start, | |
| max_num_frames=max_num_frames | |
| ) | |
| frames = [] | |
| for index, frame in enumerate(gif): | |
| # for index in frame_idxs: | |
| if index in frame_indices: | |
| frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) | |
| frame = torch.from_numpy(frame).byte() | |
| # # (H x W x C) to (C x H x W) | |
| frame = frame.permute(2, 0, 1) | |
| frames.append(frame) | |
| frames = torch.stack(frames) # .float() / 255 | |
| return frames, frame_indices, 25. # for tgif | |
| def read_frames_hdfs(ind_file, vid, num_frames, sample='rand',fix_start=None, | |
| max_num_frames=-1, client=None, clip=None): | |
| _context_features = {'title': tf.io.FixedLenFeature([], dtype=tf.string)} | |
| _sequence_features = {'data': tf.io.FixedLenSequenceFeature([], dtype=tf.string)} | |
| num_parallel_reader = 1 | |
| filename, extension = os.path.splitext(ind_file) | |
| reader = KVReader(filename, num_parallel_reader) | |
| key = vid | |
| values = reader.read_many([key]) | |
| item = values[0] | |
| contexts, sequences = tf.io.parse_single_sequence_example( | |
| serialized=item, | |
| context_features=_context_features, | |
| sequence_features=_sequence_features) | |
| # text = contexts['title'].numpy().decode("utf-8") | |
| rawframes = sequences['data'] | |
| vlen = len(rawframes) | |
| sample="rand" | |
| frame_indices = get_frame_indices(num_frames, vlen, sample=sample, | |
| fix_start=fix_start, | |
| max_num_frames=max_num_frames) | |
| def read_image(raw_data): | |
| return tf.image.decode_jpeg(raw_data, channels=3, dct_method='INTEGER_ACCURATE').numpy() | |
| frames = [] | |
| for index, frame in enumerate(rawframes): | |
| if index in frame_indices: | |
| frame = read_image(frame) | |
| frame = torch.as_tensor(frame) | |
| frames.append(frame) | |
| frames = torch.stack(frames) | |
| # print("in hdfs========>",frames[0]) | |
| frames = frames.permute(0, 3, 1, 2) | |
| return frames, frame_indices, 25 # don't know the fps for index | |
| def read_frames_decord( | |
| video_path, num_frames, sample='rand', fix_start=None, | |
| max_num_frames=-1, client=None, clip=None | |
| ): | |
| if video_path.startswith('s3') or video_path.startswith('p2'): | |
| video_bytes = client.get(video_path) | |
| video_reader = VideoReader(io.BytesIO(video_bytes), num_threads=1) | |
| else: | |
| video_reader = VideoReader(video_path, num_threads=1) | |
| vlen = len(video_reader) | |
| fps = video_reader.get_avg_fps() | |
| duration = vlen / float(fps) | |
| if clip: | |
| start, end = clip | |
| duration = end - start | |
| vlen = int(duration * fps) | |
| start_index = int(start * fps) | |
| frame_indices = get_frame_indices( | |
| num_frames, vlen, sample=sample, fix_start=fix_start, | |
| input_fps=fps, max_num_frames=max_num_frames | |
| ) | |
| if clip: | |
| frame_indices = [f + start_index for f in frame_indices] | |
| frames = video_reader.get_batch(frame_indices) # (T, H, W, C), torch.uint8 | |
| frames = frames.permute(0, 3, 1, 2) # (T, C, H, W), torch.uint8 | |
| return frames, frame_indices, float(fps) | |
| VIDEO_READER_FUNCS = { | |
| 'av': read_frames_av, | |
| 'decord': read_frames_decord, | |
| 'gif': read_frames_gif, | |
| 'hdfs': read_frames_hdfs, | |
| } | |