Spaces:
Runtime error
Runtime error
| import argparse | |
| import os | |
| import sys | |
| import pickle | |
| import math | |
| import torch | |
| import numpy as np | |
| from torchvision import utils | |
| from model import Generator, Discriminator | |
| def convert_modconv(vars, source_name, target_name, flip=False): | |
| weight = vars[source_name + '/weight'].value().eval() | |
| mod_weight = vars[source_name + '/mod_weight'].value().eval() | |
| mod_bias = vars[source_name + '/mod_bias'].value().eval() | |
| noise = vars[source_name + '/noise_strength'].value().eval() | |
| bias = vars[source_name + '/bias'].value().eval() | |
| dic = { | |
| 'conv.weight': np.expand_dims(weight.transpose((3, 2, 0, 1)), 0), | |
| 'conv.modulation.weight': mod_weight.transpose((1, 0)), | |
| 'conv.modulation.bias': mod_bias + 1, | |
| 'noise.weight': np.array([noise]), | |
| 'activate.bias': bias, | |
| } | |
| dic_torch = {} | |
| for k, v in dic.items(): | |
| dic_torch[target_name + '.' + k] = torch.from_numpy(v) | |
| if flip: | |
| dic_torch[target_name + '.conv.weight'] = torch.flip( | |
| dic_torch[target_name + '.conv.weight'], [3, 4] | |
| ) | |
| return dic_torch | |
| def convert_conv(vars, source_name, target_name, bias=True, start=0): | |
| weight = vars[source_name + '/weight'].value().eval() | |
| dic = {'weight': weight.transpose((3, 2, 0, 1))} | |
| if bias: | |
| dic['bias'] = vars[source_name + '/bias'].value().eval() | |
| dic_torch = {} | |
| dic_torch[target_name + f'.{start}.weight'] = torch.from_numpy(dic['weight']) | |
| if bias: | |
| dic_torch[target_name + f'.{start + 1}.bias'] = torch.from_numpy(dic['bias']) | |
| return dic_torch | |
| def convert_torgb(vars, source_name, target_name): | |
| weight = vars[source_name + '/weight'].value().eval() | |
| mod_weight = vars[source_name + '/mod_weight'].value().eval() | |
| mod_bias = vars[source_name + '/mod_bias'].value().eval() | |
| bias = vars[source_name + '/bias'].value().eval() | |
| dic = { | |
| 'conv.weight': np.expand_dims(weight.transpose((3, 2, 0, 1)), 0), | |
| 'conv.modulation.weight': mod_weight.transpose((1, 0)), | |
| 'conv.modulation.bias': mod_bias + 1, | |
| 'bias': bias.reshape((1, 3, 1, 1)), | |
| } | |
| dic_torch = {} | |
| for k, v in dic.items(): | |
| dic_torch[target_name + '.' + k] = torch.from_numpy(v) | |
| return dic_torch | |
| def convert_dense(vars, source_name, target_name): | |
| weight = vars[source_name + '/weight'].value().eval() | |
| bias = vars[source_name + '/bias'].value().eval() | |
| dic = {'weight': weight.transpose((1, 0)), 'bias': bias} | |
| dic_torch = {} | |
| for k, v in dic.items(): | |
| dic_torch[target_name + '.' + k] = torch.from_numpy(v) | |
| return dic_torch | |
| def update(state_dict, new): | |
| for k, v in new.items(): | |
| if k not in state_dict: | |
| raise KeyError(k + ' is not found') | |
| if v.shape != state_dict[k].shape: | |
| raise ValueError(f'Shape mismatch: {v.shape} vs {state_dict[k].shape}') | |
| state_dict[k] = v | |
| def discriminator_fill_statedict(statedict, vars, size): | |
| log_size = int(math.log(size, 2)) | |
| update(statedict, convert_conv(vars, f'{size}x{size}/FromRGB', 'convs.0')) | |
| conv_i = 1 | |
| for i in range(log_size - 2, 0, -1): | |
| reso = 4 * 2 ** i | |
| update( | |
| statedict, | |
| convert_conv(vars, f'{reso}x{reso}/Conv0', f'convs.{conv_i}.conv1'), | |
| ) | |
| update( | |
| statedict, | |
| convert_conv( | |
| vars, f'{reso}x{reso}/Conv1_down', f'convs.{conv_i}.conv2', start=1 | |
| ), | |
| ) | |
| update( | |
| statedict, | |
| convert_conv( | |
| vars, f'{reso}x{reso}/Skip', f'convs.{conv_i}.skip', start=1, bias=False | |
| ), | |
| ) | |
| conv_i += 1 | |
| update(statedict, convert_conv(vars, f'4x4/Conv', 'final_conv')) | |
| update(statedict, convert_dense(vars, f'4x4/Dense0', 'final_linear.0')) | |
| update(statedict, convert_dense(vars, f'Output', 'final_linear.1')) | |
| return statedict | |
| def fill_statedict(state_dict, vars, size): | |
| log_size = int(math.log(size, 2)) | |
| for i in range(8): | |
| update(state_dict, convert_dense(vars, f'G_mapping/Dense{i}', f'style.{i + 1}')) | |
| update( | |
| state_dict, | |
| { | |
| 'input.input': torch.from_numpy( | |
| vars['G_synthesis/4x4/Const/const'].value().eval() | |
| ) | |
| }, | |
| ) | |
| update(state_dict, convert_torgb(vars, 'G_synthesis/4x4/ToRGB', 'to_rgb1')) | |
| for i in range(log_size - 2): | |
| reso = 4 * 2 ** (i + 1) | |
| update( | |
| state_dict, | |
| convert_torgb(vars, f'G_synthesis/{reso}x{reso}/ToRGB', f'to_rgbs.{i}'), | |
| ) | |
| update(state_dict, convert_modconv(vars, 'G_synthesis/4x4/Conv', 'conv1')) | |
| conv_i = 0 | |
| for i in range(log_size - 2): | |
| reso = 4 * 2 ** (i + 1) | |
| update( | |
| state_dict, | |
| convert_modconv( | |
| vars, | |
| f'G_synthesis/{reso}x{reso}/Conv0_up', | |
| f'convs.{conv_i}', | |
| flip=True, | |
| ), | |
| ) | |
| update( | |
| state_dict, | |
| convert_modconv( | |
| vars, f'G_synthesis/{reso}x{reso}/Conv1', f'convs.{conv_i + 1}' | |
| ), | |
| ) | |
| conv_i += 2 | |
| for i in range(0, (log_size - 2) * 2 + 1): | |
| update( | |
| state_dict, | |
| { | |
| f'noises.noise_{i}': torch.from_numpy( | |
| vars[f'G_synthesis/noise{i}'].value().eval() | |
| ) | |
| }, | |
| ) | |
| return state_dict | |
| if __name__ == '__main__': | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| print('Using PyTorch device', device) | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--repo', type=str, required=True) | |
| parser.add_argument('--gen', action='store_true') | |
| parser.add_argument('--disc', action='store_true') | |
| parser.add_argument('--channel_multiplier', type=int, default=2) | |
| parser.add_argument('path', metavar='PATH') | |
| args = parser.parse_args() | |
| sys.path.append(args.repo) | |
| import dnnlib | |
| from dnnlib import tflib | |
| tflib.init_tf() | |
| with open(args.path, 'rb') as f: | |
| generator, discriminator, g_ema = pickle.load(f) | |
| size = g_ema.output_shape[2] | |
| g = Generator(size, 512, 8, channel_multiplier=args.channel_multiplier) | |
| state_dict = g.state_dict() | |
| state_dict = fill_statedict(state_dict, g_ema.vars, size) | |
| g.load_state_dict(state_dict) | |
| latent_avg = torch.from_numpy(g_ema.vars['dlatent_avg'].value().eval()) | |
| ckpt = {'g_ema': state_dict, 'latent_avg': latent_avg} | |
| if args.gen: | |
| g_train = Generator(size, 512, 8, channel_multiplier=args.channel_multiplier) | |
| g_train_state = g_train.state_dict() | |
| g_train_state = fill_statedict(g_train_state, generator.vars, size) | |
| ckpt['g'] = g_train_state | |
| if args.disc: | |
| disc = Discriminator(size, channel_multiplier=args.channel_multiplier) | |
| d_state = disc.state_dict() | |
| d_state = discriminator_fill_statedict(d_state, discriminator.vars, size) | |
| ckpt['d'] = d_state | |
| name = os.path.splitext(os.path.basename(args.path))[0] | |
| outpath = os.path.join(os.getcwd(), f'{name}.pt') | |
| print('Saving', outpath) | |
| try: | |
| torch.save(ckpt, outpath, _use_new_zipfile_serialization=False) | |
| except TypeError: | |
| torch.save(ckpt, outpath) | |
| print('Generating TF-Torch comparison images') | |
| batch_size = {256: 8, 512: 4, 1024: 2} | |
| n_sample = batch_size.get(size, 4) | |
| g = g.to(device) | |
| z = np.random.RandomState(0).randn(n_sample, 512).astype('float32') | |
| with torch.no_grad(): | |
| img_pt, _ = g( | |
| [torch.from_numpy(z).to(device)], | |
| truncation=0.5, | |
| truncation_latent=latent_avg.to(device), | |
| ) | |
| img_tf = g_ema.run(z, None, randomize_noise=False) | |
| img_tf = torch.from_numpy(img_tf).to(device) | |
| img_diff = ((img_pt + 1) / 2).clamp(0.0, 1.0) - ((img_tf.to(device) + 1) / 2).clamp( | |
| 0.0, 1.0 | |
| ) | |
| img_concat = torch.cat((img_tf, img_pt, img_diff), dim=0) | |
| utils.save_image( | |
| img_concat, name + '.png', nrow=n_sample, normalize=True, range=(-1, 1) | |
| ) | |
| print('Done') | |