File size: 10,039 Bytes
89c5d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from __future__ import absolute_import, division, print_function

import time, os
import numpy as np
from os.path import join
import cv2 as cv

from model import *
from utls import image_normalization,visualize_result, tensor2image, cv_imshow,h5_writer
from dataset_manager import DataLoader


BUFFER_SIZE = 448

# tf.set_random_seed(1)
class run_DexiNed():

    def __init__(self, args):
        self.model_state= args.model_state
        self.args = args
        self.img_width=args.image_width
        self.img_height = args.image_height
        self.epochs = args.max_epochs
        self.bs = args.batch_size

    def train(self):
        # Validation and Train dataset generation

        train_data = DataLoader(data_name=self.args.data4train, arg=self.args)
        n_train =train_data.indices.size #data_cache["n_files"]
        val_data = DataLoader(data_name=self.args.data4train,
                              arg=self.args, is_val=True)
        val_idcs = np.arange(val_data.indices.size)
        # Summary and checkpoint manager
        model_dir =self.args.model_name+'2'+self.args.data4train
        summary_dir = os.path.join('logs',model_dir)
        train_log_dir=os.path.join(summary_dir,'train')
        val_log_dir =os.path.join(summary_dir,'test')

        checkpoint_dir = os.path.join(self.args.checkpoint_dir,model_dir)
        epoch_ckpt_dir = checkpoint_dir + 'epochs'
        os.makedirs(epoch_ckpt_dir, exist_ok=True)
        os.makedirs(train_log_dir,exist_ok=True)
        os.makedirs(val_log_dir,exist_ok=True)
        os.makedirs(checkpoint_dir, exist_ok=True)

        train_writer = tf.summary.create_file_writer(train_log_dir)
        val_writer = tf.summary.create_file_writer(val_log_dir)

        my_model = DexiNed(rgb_mean=self.args.rgbn_mean)#rgb_mean=self.args.rgbn_mean

        # accuracy = metrics.SparseCategoricalAccuracy()
        accuracy = metrics.BinaryAccuracy()
        accuracy_val = metrics.BinaryAccuracy()
        loss_bc = losses.BinaryCrossentropy()
        optimizer = optimizers.Adam(
            learning_rate=self.args.lr, beta_1=self.args.beta1)
        iter = 0

        imgs_res_folder = os.path.join(self.args.output_dir, "current_training")
        os.makedirs(imgs_res_folder, exist_ok=True)
        global_loss = 1000.
        t_loss = []
        ckpt_save_mode = "h5"
        tmp_lr = self.args.lr
        for epoch in range(self.args.max_epochs):
            # training
            t_loss = []
            # if epoch in self.args.adjust_lr:
            tmp_lr=tmp_lr*0.1
            optimizer.lr.assign(tmp_lr)
            for step, (x, y) in enumerate(train_data):

                with tf.GradientTape() as tape:
                    pred = my_model(x, training=True)

                    preds, loss = pre_process_binary_cross_entropy(
                        loss_bc, pred, y, self.args, use_tf_loss=False)

                accuracy.update_state(y_true=y, y_pred=preds[-1])
                gradients = tape.gradient(loss, my_model.trainable_variables)
                optimizer.apply_gradients(zip(gradients, my_model.trainable_variables))

                # logging the current accuracy value so far.
                t_loss.append(loss.numpy())
                if step % 10 == 0:
                    print("Epoch:", epoch, "Step:", step, "Loss: %.4f" % loss.numpy(),
                          "Accuracy: %.4f" % accuracy.result(), time.ctime())

                if step % 10 == 0:
                    # visualize preds
                    img_test = 'Epoch: {0} Sample {1}/{2} Loss: {3}' \
                        .format(epoch, step, n_train // self.args.batch_size, loss.numpy())
                    vis_imgs = visualize_result(
                        x=x[2], y=y[2], p=preds, img_title=img_test)
                    cv.imwrite(os.path.join(imgs_res_folder, 'results.png'), vis_imgs)
                if step % 20 == 0 and loss < global_loss:  # 500
                    if epoch==0 and step==0:
                        tmp_loss = np.array(t_loss)
                        with train_writer.as_default():
                            tf.summary.scalar('loss', tmp_loss.mean(), step=epoch)
                            tf.summary.scalar('accuracy', accuracy.result(), step=epoch)

                    save_ckpt_path = os.path.join(checkpoint_dir, "DexiNedL_model.h5")
                    Model.save_weights(my_model, save_ckpt_path, save_format='h5')

                    global_loss = loss
                    print("Model saved in:  ", save_ckpt_path, "Current loss:", global_loss.numpy())

                iter += 1  # global iteration

            t_loss = np.array(t_loss)
            # train summary
            if epoch!=0:
                with train_writer.as_default():
                    tf.summary.scalar('loss', t_loss.mean(), step=epoch)
                    tf.summary.scalar('accuracy', accuracy.result(), step=epoch)

            Model.save_weights(my_model, os.path.join(epoch_ckpt_dir, "DexiNed{}_model.h5".format(str(epoch))),
                               save_format=ckpt_save_mode)
            print("Epoch:", epoch, "Model saved in Loss: ", t_loss.mean())

            # validation
            t_val_loss = []
            for i, (x_val, y_val) in enumerate(val_data):

                pred_val = my_model(x_val)
                v_logits, V_loss = pre_process_binary_cross_entropy(
                    loss_bc, pred_val, y_val, self.args, use_tf_loss=False)
                accuracy_val.update_state(y_true=y_val, y_pred=v_logits[-1])
                t_val_loss.append(V_loss.numpy())
                if i == 7:
                    break
            val_acc = accuracy_val.result()
            t_val_loss = np.array(t_val_loss)
            print("Epoch(validation):", epoch, "Val loss: ", t_val_loss.mean(),
                  "Accuracy: ", val_acc.numpy())
            # validation summary
            with val_writer.as_default():
                tf.summary.scalar('loss', t_val_loss.mean(), step=epoch)
                tf.summary.scalar('accuracy', val_acc.numpy(), step=epoch)

            # Reset metrics every epoch
            accuracy.reset_states()
            accuracy_val.reset_states()

        my_model.summary()


    def test(self):
        # Test dataset generation

        test_data = DataLoader(data_name=self.args.data4test, arg=self.args)
        n_test = test_data.indices.size  # data_cache["n_files"]

        optimizer = tf.keras.optimizers.Adam(
            learning_rate=self.args.lr, beta_1=self.args.beta1)

        my_model = DexiNed(rgb_mean=self.args.rgbn_mean)
        input_shape = test_data.input_shape
        my_model.build(input_shape=input_shape)  # rgb_mean=self.args.rgbn_mean

        checkpoit_dir = os.path.join(self.args.checkpoint_dir,
                                     self.args.model_name + "2" + self.args.data4train)

        my_model.load_weights(os.path.join(checkpoit_dir, self.args.checkpoint))

        result_dir = os.path.join(
            self.args.output_dir,
            self.args.model_name + '-' + self.args.data4train + "2" + self.args.data4test)
        os.makedirs(result_dir, exist_ok=True)
        if self.args.scale is not None:
            scl = self.args.scale
            save_dir = ['fuse_'+str(scl), 'avrg_'+str(scl), 'h5_'+str(scl)]
        else:
            save_dir = ['fuse', 'avrg', 'h5']
        save_dirs = []
        for tmp_dir in save_dir:
            os.makedirs(os.path.join(result_dir, tmp_dir), exist_ok=True)
            save_dirs.append(os.path.join(result_dir, tmp_dir))

        total_time = []
        data_names = test_data.imgs_name
        data_shape = test_data.imgs_shape
        k = 0
        for step, (x, y) in enumerate(test_data):

            start_time = time.time()
            preds = my_model(x, training=False)
            tmp_time = time.time() - start_time
            total_time.append(tmp_time)

            preds = [tf.sigmoid(i).numpy() for i in preds]
            all_preds = np.array(preds)
            for i in range(all_preds.shape[1]):
                tmp_name = data_names[k]
                tmp_name, _ = os.path.splitext(tmp_name)
                tmp_shape = data_shape[k]

                tmp_preds = all_preds[:, i, ...]
                tmp_av = np.expand_dims(tmp_preds.mean(axis=0), axis=0)
                tmp_preds = np.concatenate((tmp_preds, tmp_av), axis=0)
                res_preds = []
                for j in range(tmp_preds.shape[0]):
                    tmp_pred = tmp_preds[j, ...]
                    tmp_pred[tmp_pred < 0.0] = 0.0
                    tmp_pred = cv.bitwise_not(np.uint8(image_normalization(tmp_pred)))
                    h, w = tmp_pred.shape[:2]
                    if h != tmp_shape[0] or w != tmp_shape[1]:
                        tmp_pred = cv.resize(tmp_pred, (tmp_shape[1], tmp_shape[0]))
                    res_preds.append(tmp_pred)
                n_save =len(tmp_preds)-2
                for idx in range(len(save_dirs) - 1):
                    s_dir = save_dirs[idx]
                    tmp = res_preds[n_save + idx]
                    cv.imwrite(join(s_dir, tmp_name + '.png'), tmp)
                h5_writer(path=join(save_dirs[-1], tmp_name + '.h5'),
                          vars=np.squeeze(res_preds))
                print("saved:", join(save_dirs[-1], tmp_name + '.h5'), tmp_preds.shape)
                k += 1

            # tmp_name = data_names[step][:-3]+"png"
            # tmp_shape = data_shape[step]
            # tmp_path = os.path.join(result_dir,tmp_name)
            # tensor2image(preds[-1].numpy(), img_path =tmp_path,img_shape=tmp_shape)

        total_time = np.array(total_time)

        print('-------------------------------------------------')
        print("End testing in: ", self.args.data4test)
        print("Batch size: ", self.args.test_bs)
        print("Time average per image: ", total_time.mean(), "secs")
        print("Total time: ", total_time.sum(), "secs")
        print('-------------------------------------------------')