File size: 13,036 Bytes
89c5d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
from tensorflow.keras import callbacks
from tensorflow.keras import layers, regularizers
from tensorflow.keras import optimizers, metrics, losses
from tensorflow.keras.models import Model
from tensorflow.keras.models import load_model
from tensorflow.keras import backend as K
from tensorflow import keras
import tensorflow as tf


l2 = regularizers.l2
w_decay=1e-8 #0.0#2e-4#1e-3, 2e-4 # please define weight decay
K.clear_session()
# weight_init = tf.initializers.RandomNormal(mean=0.,stddev=0.01)
# weight_init = tf.initializers.glorot_normal()
weight_init = tf.initializers.glorot_normal()

class _DenseLayer(layers.Layer):
    """_DenseBlock model.

       Arguments:
         out_features: number of output features
    """

    def __init__(self, out_features,**kwargs):
        super(_DenseLayer, self).__init__(**kwargs)
        k_reg = None if w_decay is None else l2(w_decay)
        self.layers = []
        self.layers.append(tf.keras.Sequential(
            [
                layers.ReLU(),
                layers.Conv2D(
                    filters=out_features, kernel_size=(3,3), strides=(1,1), padding='same',
                    use_bias=True, kernel_initializer=weight_init,
                kernel_regularizer=k_reg),
                layers.BatchNormalization(),
                layers.ReLU(),
                layers.Conv2D(
                    filters=out_features, kernel_size=(3,3), strides=(1,1), padding='same',
                    use_bias=True, kernel_initializer=weight_init,
                    kernel_regularizer=k_reg),
                layers.BatchNormalization(),
            ])) # first relu can be not needed


    def call(self, inputs):
        x1, x2 = tuple(inputs)
        new_features = x1
        for layer in self.layers:
            new_features = layer(new_features)

        return 0.5 * (new_features + x2), x2


class _DenseBlock(layers.Layer):
    """DenseBlock layer.

       Arguments:
         num_layers: number of _DenseLayer's per block
         out_features: number of output features
    """

    def __init__(self,
                 num_layers,
                 out_features,**kwargs):
        super(_DenseBlock, self).__init__(**kwargs)
        self.layers = [_DenseLayer(out_features) for i in range(num_layers)]

    def call(self, inputs):
        for layer in self.layers:
            inputs = layer(inputs)

        return inputs


class UpConvBlock(layers.Layer):
    """UpConvDeconvBlock layer.

       Arguments:
         up_scale: int
    """

    def __init__(self, up_scale,**kwargs):
        super(UpConvBlock, self).__init__(**kwargs)
        constant_features = 16
        k_reg = None if w_decay is None else l2(w_decay)
        features = []
        total_up_scale = 2 ** up_scale
        for i in range(up_scale):
            out_features = 1 if i == up_scale-1 else constant_features
            if i==up_scale-1:
                features.append(layers.Conv2D(
                    filters=out_features, kernel_size=(1,1), strides=(1,1), padding='same',
                    activation='relu', kernel_initializer=tf.initializers.RandomNormal(mean=0.),
                    kernel_regularizer=k_reg,use_bias=True)) #tf.initializers.TruncatedNormal(mean=0.)
                features.append(layers.Conv2DTranspose(
                    out_features, kernel_size=(total_up_scale,total_up_scale),
                    strides=(2,2), padding='same',
                    kernel_initializer=tf.initializers.RandomNormal(stddev=0.1),
                    kernel_regularizer=k_reg,use_bias=True)) # stddev=0.1
            else:

                features.append(layers.Conv2D(
                    filters=out_features, kernel_size=(1,1), strides=(1,1), padding='same',
                    activation='relu',kernel_initializer=weight_init,
                kernel_regularizer=k_reg,use_bias=True))
                features.append(layers.Conv2DTranspose(
                    out_features, kernel_size=(total_up_scale,total_up_scale),
                    strides=(2,2), padding='same', use_bias=True,
                    kernel_initializer=weight_init, kernel_regularizer=k_reg))

        self.features = keras.Sequential(features)

    def call(self, inputs):
        return self.features(inputs)


class SingleConvBlock(layers.Layer):
    """SingleConvBlock layer.

       Arguments:
         out_features: number of output features
         stride: stride per convolution
    """

    def __init__(self, out_features, k_size=(1,1),stride=(1,1),
                 use_bs=False, use_act=False,w_init=None,**kwargs): # bias_init=tf.constant_initializer(0.0)
        super(SingleConvBlock, self).__init__(**kwargs)
        self.use_bn = use_bs
        self.use_act = use_act
        k_reg = None if w_decay is None else l2(w_decay)
        self.conv = layers.Conv2D(
            filters=out_features, kernel_size=k_size, strides=stride,
            padding='same',kernel_initializer=w_init,
            kernel_regularizer=k_reg)#, use_bias=True, bias_initializer=bias_init
        if self.use_bn:
            self.bn = layers.BatchNormalization()
        if self.use_act:
            self.relu = layers.ReLU()

    def call(self, inputs):
        x =self.conv(inputs)
        if self.use_bn:
            x = self.bn(x)
        if self.use_act:
            x = self.relu(x)
        return x


class DoubleConvBlock(layers.Layer):
    """DoubleConvBlock layer.

       Arguments:
         mid_features: number of middle features
         out_features: number of output features
         stride: stride per mid-layer convolution
    """

    def __init__(self, mid_features, out_features=None, stride=(1,1),
                 use_bn=True,use_act=True,**kwargs):
        super(DoubleConvBlock, self).__init__(**kwargs)
        self.use_bn =use_bn
        self.use_act =use_act
        out_features = mid_features if out_features is None else out_features
        k_reg = None if w_decay is None else l2(w_decay)

        self.conv1 = layers.Conv2D(
            filters=mid_features, kernel_size=(3, 3), strides=stride, padding='same',
        use_bias=True, kernel_initializer=weight_init,
        kernel_regularizer=k_reg)
        self.bn1 = layers.BatchNormalization()

        self.conv2 = layers.Conv2D(
            filters=out_features, kernel_size=(3, 3), padding='same',strides=(1,1),
        use_bias=True, kernel_initializer=weight_init,
        kernel_regularizer=k_reg)
        self.bn2 = layers.BatchNormalization()
        self.relu = layers.ReLU()

    def call(self, inputs):
        x = self.conv1(inputs)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.conv2(x)
        x = self.bn2(x)
        if self.use_act:
            x = self.relu(x)
        return x


class DexiNed(tf.keras.Model):
    """DexiNet model."""

    def __init__(self,rgb_mean=None,
                 **kwargs):
        super(DexiNed, self).__init__(**kwargs)

        self.rgbn_mean = rgb_mean
        self.block_1 = DoubleConvBlock(32, 64, stride=(2,2),use_act=False)
        self.block_2 = DoubleConvBlock(128,use_act=False)
        self.dblock_3 = _DenseBlock(2, 256)
        self.dblock_4 = _DenseBlock(3, 512)
        self.dblock_5 = _DenseBlock(3, 512)
        self.dblock_6 = _DenseBlock(3, 256)
        self.maxpool = layers.MaxPool2D(pool_size=(3, 3), strides=2, padding='same')

        # left skip connections, figure in Journal
        self.side_1 = SingleConvBlock(128,k_size=(1,1),stride=(2,2),use_bs=True,
                                      w_init=weight_init)
        self.side_2 = SingleConvBlock(256,k_size=(1,1),stride=(2,2),use_bs=True,
                                      w_init=weight_init)
        self.side_3 = SingleConvBlock(512,k_size=(1,1),stride=(2,2),use_bs=True,
                                      w_init=weight_init)
        self.side_4 = SingleConvBlock(512,k_size=(1,1),stride=(1,1),use_bs=True,
                                      w_init=weight_init)
        # self.side_5 = SingleConvBlock(256,k_size=(1,1),stride=(1,1),use_bs=True,
        #                               w_init=weight_init)

        # right skip connections, figure in Journal paper
        self.pre_dense_2 = SingleConvBlock(256,k_size=(1,1),stride=(2,2),
                                      w_init=weight_init) # use_bn=True
        self.pre_dense_3 = SingleConvBlock(256,k_size=(1,1),stride=(1,1),use_bs=True,
                                      w_init=weight_init)
        self.pre_dense_4 = SingleConvBlock(512,k_size=(1,1),stride=(1,1),use_bs=True,
                                      w_init=weight_init)
        # self.pre_dense_5_0 = SingleConvBlock(512, k_size=(1,1),stride=(2,2),
        #                               w_init=weight_init) # use_bn=True
        self.pre_dense_5 = SingleConvBlock(512,k_size=(1,1),stride=(1,1),use_bs=True,
                                      w_init=weight_init)
        self.pre_dense_6 = SingleConvBlock(256,k_size=(1,1),stride=(1,1),use_bs=True,
                                      w_init=weight_init)
        # USNet
        self.up_block_1 = UpConvBlock(1)
        self.up_block_2 = UpConvBlock(1)
        self.up_block_3 = UpConvBlock(2)
        self.up_block_4 = UpConvBlock(3)
        self.up_block_5 = UpConvBlock(4)
        self.up_block_6 = UpConvBlock(4)

        self.block_cat = SingleConvBlock(
            1,k_size=(1,1),stride=(1,1),
            w_init=tf.constant_initializer(1/5))


    def slice(self, tensor, slice_shape):
        height, width = slice_shape
        return tensor[..., :height, :width]


    def call(self, x):
        # Block 1
        x = x-self.rgbn_mean[:-1]
        block_1 = self.block_1(x)
        block_1_side = self.side_1(block_1)

        # Block 2
        block_2 = self.block_2(block_1)
        block_2_down = self.maxpool(block_2) # the key for the second skip connec...
        block_2_add = block_2_down + block_1_side
        block_2_side = self.side_2(block_2_add) #

        # Block 3
        block_3_pre_dense = self.pre_dense_3(block_2_down)
        block_3, _ = self.dblock_3([block_2_add, block_3_pre_dense])
        block_3_down = self.maxpool(block_3)
        block_3_add = block_3_down + block_2_side
        block_3_side = self.side_3(block_3_add)

        # Block 4
        block_4_pre_dense_256 = self.pre_dense_2(block_2_down)
        block_4_pre_dense = self.pre_dense_4(block_4_pre_dense_256 + block_3_down)
        block_4, _ = self.dblock_4([block_3_add, block_4_pre_dense])
        block_4_down = self.maxpool(block_4)
        block_4_add = block_4_down + block_3_side
        block_4_side = self.side_4(block_4_add)

        # Block 5
        # block_5_pre_dense_512 = self.pre_dense_5_0(block_4_pre_dense_256)
        block_5_pre_dense = self.pre_dense_5(block_4_down )
        block_5, _ = self.dblock_5([block_4_add, block_5_pre_dense])
        block_5_add = block_5 + block_4_side

        # Block 6
        block_6_pre_dense = self.pre_dense_6(block_5)
        block_6, _ = self.dblock_6([block_5_add, block_6_pre_dense])

        # upsampling blocks
        height, width = x.shape[1:3]
        slice_shape = (height, width)
        out_1 = self.up_block_1(block_1) # self.slice(, slice_shape)
        out_2 = self.up_block_2(block_2)
        out_3 = self.up_block_3(block_3)
        out_4 = self.up_block_4(block_4)
        out_5 = self.up_block_5(block_5)
        out_6 = self.up_block_6(block_6)
        results = [out_1, out_2, out_3, out_4, out_5, out_6]

        # concatenate multiscale outputs
        block_cat = tf.concat(results, 3)  # BxHxWX6
        block_cat = self.block_cat(block_cat)  # BxHxWX1

        results.append(block_cat)

        return results

def weighted_cross_entropy_loss(input, label):
    y = tf.cast(label,dtype=tf.float32)
    negatives = tf.math.reduce_sum(1.-y)
    positives = tf.math.reduce_sum(y)

    beta = negatives/(negatives + positives)
    pos_w = beta/(1-beta)
    cost = tf.nn.weighted_cross_entropy_with_logits(
    labels=label, logits=input, pos_weight=pos_w, name=None)
    cost = tf.reduce_sum(cost*(1-beta))
    return tf.where(tf.equal(positives, 0.0), 0.0, cost)


def pre_process_binary_cross_entropy(bc_loss,input, label,arg, use_tf_loss=False):
    # preprocess data
    y = label
    loss = 0
    w_loss=1.0
    preds = []
    for tmp_p in input:
        # tmp_p = input[i]

        # loss processing
        tmp_y = tf.cast(y, dtype=tf.float32)
        mask = tf.dtypes.cast(tmp_y > 0., tf.float32)
        b,h,w,c=mask.get_shape()
        positives = tf.math.reduce_sum(mask, axis=[1, 2, 3], keepdims=True)
        negatives = h*w*c-positives

        beta2 = (1.*positives) / (negatives + positives) # negatives in hed
        beta = (1.1*negatives)/ (positives + negatives) # positives in hed
        pos_w = tf.where(tf.equal(y, 0.0), beta2, beta)
        logits = tf.sigmoid(tmp_p)

        l_cost = bc_loss(y_true=tmp_y, y_pred=logits,
                         sample_weight=pos_w)

        preds.append(logits)
        loss += (l_cost*w_loss)

    return preds, loss