Spaces:
Configuration error
Configuration error
File size: 20,693 Bytes
89c5d90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
from __future__ import print_function
import argparse
import os
import time, platform
import cv2
import torch.optim as optim
from torch.utils.data import DataLoader
from datasets import DATASET_NAMES, BipedDataset, TestDataset, dataset_info
from losses import *
from model import DexiNed
from utils import (image_normalization, save_image_batch_to_disk,
visualize_result,count_parameters)
IS_LINUX = True if platform.system()=="Linux" else False
def train_one_epoch(epoch, dataloader, model, criterion, optimizer, device,
log_interval_vis, tb_writer, args=None):
imgs_res_folder = os.path.join(args.output_dir, 'current_res')
os.makedirs(imgs_res_folder,exist_ok=True)
# Put model in training mode
model.train()
# l_weight = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1.1] # for bdcn ori loss
# before [0.6,0.6,1.1,1.1,0.4,0.4,1.3] [0.4,0.4,1.1,1.1,0.6,0.6,1.3],[0.4,0.4,1.1,1.1,0.8,0.8,1.3]
l_weight = [0.7,0.7,1.1,1.1,0.3,0.3,1.3] # New BDCN loss
# l_weight = [[0.05, 2.], [0.05, 2.], [0.05, 2.],
# [0.1, 1.], [0.1, 1.], [0.1, 1.],
# [0.01, 4.]] # for cats loss
loss_avg =[]
for batch_id, sample_batched in enumerate(dataloader):
images = sample_batched['images'].to(device) # BxCxHxW
labels = sample_batched['labels'].to(device) # BxHxW
preds_list = model(images)
# loss = sum([criterion(preds, labels, l_w, device) for preds, l_w in zip(preds_list, l_weight)]) # cats_loss
loss = sum([criterion(preds, labels,l_w) for preds, l_w in zip(preds_list,l_weight)]) # bdcn_loss
# loss = sum([criterion(preds, labels) for preds in preds_list]) #HED loss, rcf_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_avg.append(loss.item())
if epoch==0 and (batch_id==100 and tb_writer is not None):
tmp_loss = np.array(loss_avg).mean()
tb_writer.add_scalar('loss', tmp_loss,epoch)
if batch_id % 5 == 0:
print(time.ctime(), 'Epoch: {0} Sample {1}/{2} Loss: {3}'
.format(epoch, batch_id, len(dataloader), loss.item()))
if batch_id % log_interval_vis == 0:
res_data = []
img = images.cpu().numpy()
res_data.append(img[2])
ed_gt = labels.cpu().numpy()
res_data.append(ed_gt[2])
# tmp_pred = tmp_preds[2,...]
for i in range(len(preds_list)):
tmp = preds_list[i]
tmp = tmp[2]
# print(tmp.shape)
tmp = torch.sigmoid(tmp).unsqueeze(dim=0)
tmp = tmp.cpu().detach().numpy()
res_data.append(tmp)
vis_imgs = visualize_result(res_data, arg=args)
del tmp, res_data
vis_imgs = cv2.resize(vis_imgs,
(int(vis_imgs.shape[1]*0.8), int(vis_imgs.shape[0]*0.8)))
img_test = 'Epoch: {0} Sample {1}/{2} Loss: {3}' \
.format(epoch, batch_id, len(dataloader), loss.item())
BLACK = (0, 0, 255)
font = cv2.FONT_HERSHEY_SIMPLEX
font_size = 1.1
font_color = BLACK
font_thickness = 2
x, y = 30, 30
vis_imgs = cv2.putText(vis_imgs,
img_test,
(x, y),
font, font_size, font_color, font_thickness, cv2.LINE_AA)
cv2.imwrite(os.path.join(imgs_res_folder, 'results.png'), vis_imgs)
loss_avg = np.array(loss_avg).mean()
return loss_avg
def validate_one_epoch(epoch, dataloader, model, device, output_dir, arg=None):
# XXX This is not really validation, but testing
# Put model in eval mode
model.eval()
with torch.no_grad():
for _, sample_batched in enumerate(dataloader):
images = sample_batched['images'].to(device)
# labels = sample_batched['labels'].to(device)
file_names = sample_batched['file_names']
image_shape = sample_batched['image_shape']
preds = model(images)
# print('pred shape', preds[0].shape)
save_image_batch_to_disk(preds[-1],
output_dir,
file_names,img_shape=image_shape,
arg=arg)
def test(checkpoint_path, dataloader, model, device, output_dir, args):
if not os.path.isfile(checkpoint_path):
raise FileNotFoundError(
f"Checkpoint filte note found: {checkpoint_path}")
print(f"Restoring weights from: {checkpoint_path}")
model.load_state_dict(torch.load(checkpoint_path,
map_location=device))
# Put model in evaluation mode
model.eval()
with torch.no_grad():
total_duration = []
for batch_id, sample_batched in enumerate(dataloader):
images = sample_batched['images'].to(device)
if not args.test_data == "CLASSIC":
labels = sample_batched['labels'].to(device)
file_names = sample_batched['file_names']
image_shape = sample_batched['image_shape']
print(f"input tensor shape: {images.shape}")
# images = images[:, [2, 1, 0], :, :]
end = time.perf_counter()
if device.type == 'cuda':
torch.cuda.synchronize()
preds = model(images)
if device.type == 'cuda':
torch.cuda.synchronize()
tmp_duration = time.perf_counter() - end
total_duration.append(tmp_duration)
save_image_batch_to_disk(preds,
output_dir,
file_names,
image_shape,
arg=args)
torch.cuda.empty_cache()
total_duration = np.sum(np.array(total_duration))
print("******** Testing finished in", args.test_data, "dataset. *****")
print("FPS: %f.4" % (len(dataloader)/total_duration))
def testPich(checkpoint_path, dataloader, model, device, output_dir, args):
# a test model plus the interganged channels
if not os.path.isfile(checkpoint_path):
raise FileNotFoundError(
f"Checkpoint filte note found: {checkpoint_path}")
print(f"Restoring weights from: {checkpoint_path}")
model.load_state_dict(torch.load(checkpoint_path,
map_location=device))
# Put model in evaluation mode
model.eval()
with torch.no_grad():
total_duration = []
for batch_id, sample_batched in enumerate(dataloader):
images = sample_batched['images'].to(device)
if not args.test_data == "CLASSIC":
labels = sample_batched['labels'].to(device)
file_names = sample_batched['file_names']
image_shape = sample_batched['image_shape']
print(f"input tensor shape: {images.shape}")
start_time = time.time()
# images2 = images[:, [1, 0, 2], :, :] #GBR
images2 = images[:, [2, 1, 0], :, :] # RGB
preds = model(images)
preds2 = model(images2)
tmp_duration = time.time() - start_time
total_duration.append(tmp_duration)
save_image_batch_to_disk([preds,preds2],
output_dir,
file_names,
image_shape,
arg=args, is_inchannel=True)
torch.cuda.empty_cache()
total_duration = np.array(total_duration)
print("******** Testing finished in", args.test_data, "dataset. *****")
print("Average time per image: %f.4" % total_duration.mean(), "seconds")
print("Time spend in the Dataset: %f.4" % total_duration.sum(), "seconds")
def parse_args():
"""Parse command line arguments."""
parser = argparse.ArgumentParser(description='DexiNed trainer.')
parser.add_argument('--choose_test_data',
type=int,
default=-1,
help='Already set the dataset for testing choice: 0 - 8')
# ----------- test -------0--
TEST_DATA = DATASET_NAMES[parser.parse_args().choose_test_data] # max 8
test_inf = dataset_info(TEST_DATA, is_linux=IS_LINUX)
test_dir = test_inf['data_dir']
is_testing =True# current test -352-SM-NewGT-2AugmenPublish
# Training settings
TRAIN_DATA = DATASET_NAMES[0] # BIPED=0, MDBD=6
train_inf = dataset_info(TRAIN_DATA, is_linux=IS_LINUX)
train_dir = train_inf['data_dir']
# Data parameters
parser.add_argument('--input_dir',
type=str,
default=train_dir,
help='the path to the directory with the input data.')
parser.add_argument('--input_val_dir',
type=str,
default=test_inf['data_dir'],
help='the path to the directory with the input data for validation.')
parser.add_argument('--output_dir',
type=str,
default='checkpoints',
help='the path to output the results.')
parser.add_argument('--train_data',
type=str,
choices=DATASET_NAMES,
default=TRAIN_DATA,
help='Name of the dataset.')
parser.add_argument('--test_data',
type=str,
choices=DATASET_NAMES,
default=TEST_DATA,
help='Name of the dataset.')
parser.add_argument('--test_list',
type=str,
default=test_inf['test_list'],
help='Dataset sample indices list.')
parser.add_argument('--train_list',
type=str,
default=train_inf['train_list'],
help='Dataset sample indices list.')
parser.add_argument('--is_testing',type=bool,
default=is_testing,
help='Script in testing mode.')
parser.add_argument('--double_img',
type=bool,
default=False,
help='True: use same 2 imgs changing channels') # Just for test
parser.add_argument('--resume',
type=bool,
default=False,
help='use previous trained data') # Just for test
parser.add_argument('--checkpoint_data',
type=str,
default='10/10_model.pth',# 4 6 7 9 14
help='Checkpoint path from which to restore model weights from.')
parser.add_argument('--test_img_width',
type=int,
default=test_inf['img_width'],
help='Image width for testing.')
parser.add_argument('--test_img_height',
type=int,
default=test_inf['img_height'],
help='Image height for testing.')
parser.add_argument('--res_dir',
type=str,
default='result',
help='Result directory')
parser.add_argument('--log_interval_vis',
type=int,
default=50,
help='The number of batches to wait before printing test predictions.')
parser.add_argument('--epochs',
type=int,
default=17,
metavar='N',
help='Number of training epochs (default: 25).')
parser.add_argument('--lr',
default=1e-4,
type=float,
help='Initial learning rate.')
parser.add_argument('--wd',
type=float,
default=1e-8,
metavar='WD',
help='weight decay (Good 1e-8) in TF1=0') # 1e-8 -> BIRND/MDBD, 0.0 -> BIPED
parser.add_argument('--adjust_lr',
default=[10,15],
type=int,
help='Learning rate step size.') #[5,10]BIRND [10,15]BIPED/BRIND
parser.add_argument('--batch_size',
type=int,
default=8,
metavar='B',
help='the mini-batch size (default: 8)')
parser.add_argument('--workers',
default=16,
type=int,
help='The number of workers for the dataloaders.')
parser.add_argument('--tensorboard',type=bool,
default=True,
help='Use Tensorboard for logging.'),
parser.add_argument('--img_width',
type=int,
default=352,
help='Image width for training.') # BIPED 400 BSDS 352/320 MDBD 480
parser.add_argument('--img_height',
type=int,
default=352,
help='Image height for training.') # BIPED 480 BSDS 352/320
parser.add_argument('--channel_swap',
default=[2, 1, 0],
type=int)
parser.add_argument('--crop_img',
default=True,
type=bool,
help='If true crop training images, else resize images to match image width and height.')
parser.add_argument('--mean_pixel_values',
default=[103.939,116.779,123.68, 137.86],
type=float) # [103.939,116.779,123.68] [104.00699, 116.66877, 122.67892]
args = parser.parse_args()
return args
def main(args):
"""Main function."""
print(f"Number of GPU's available: {torch.cuda.device_count()}")
print(f"Pytorch version: {torch.__version__}")
# Tensorboard summary writer
tb_writer = None
training_dir = os.path.join(args.output_dir,args.train_data)
os.makedirs(training_dir,exist_ok=True)
checkpoint_path = os.path.join(args.output_dir, args.train_data, args.checkpoint_data)
if args.tensorboard and not args.is_testing:
from torch.utils.tensorboard import SummaryWriter # for torch 1.4 or greather
tb_writer = SummaryWriter(log_dir=training_dir)
# saving Model training settings
training_notes = ['DexiNed, Xavier Normal Init, LR= ' + str(args.lr) + ' WD= '
+ str(args.wd) + ' image size = ' + str(args.img_width)
+ ' adjust LR='+ str(args.adjust_lr) + ' Loss Function= BDCNloss2. '
+'Trained on> '+args.train_data+' Tested on> '
+args.test_data+' Batch size= '+str(args.batch_size)+' '+str(time.asctime())]
info_txt = open(os.path.join(training_dir, 'training_settings.txt'), 'w')
info_txt.write(str(training_notes))
info_txt.close()
# Get computing device
device = torch.device('cpu' if torch.cuda.device_count() == 0
else 'cuda')
# Instantiate model and move it to the computing device
model = DexiNed().to(device)
# model = nn.DataParallel(model)
ini_epoch =0
if not args.is_testing:
if args.resume:
ini_epoch=11
model.load_state_dict(torch.load(checkpoint_path,
map_location=device))
print('Training restarted from> ',checkpoint_path)
dataset_train = BipedDataset(args.input_dir,
img_width=args.img_width,
img_height=args.img_height,
mean_bgr=args.mean_pixel_values[0:3] if len(
args.mean_pixel_values) == 4 else args.mean_pixel_values,
train_mode='train',
arg=args
)
dataloader_train = DataLoader(dataset_train,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers)
dataset_val = TestDataset(args.input_val_dir,
test_data=args.test_data,
img_width=args.test_img_width,
img_height=args.test_img_height,
mean_bgr=args.mean_pixel_values[0:3] if len(
args.mean_pixel_values) == 4 else args.mean_pixel_values,
test_list=args.test_list, arg=args
)
dataloader_val = DataLoader(dataset_val,
batch_size=1,
shuffle=False,
num_workers=args.workers)
# Testing
if args.is_testing:
output_dir = os.path.join(args.res_dir, args.train_data+"2"+ args.test_data)
print(f"output_dir: {output_dir}")
if args.double_img:
# predict twice an image changing channels, then mix those results
testPich(checkpoint_path, dataloader_val, model, device, output_dir, args)
else:
test(checkpoint_path, dataloader_val, model, device, output_dir, args)
num_param = count_parameters(model)
print('-------------------------------------------------------')
print('DexiNed # of Parameters:')
print(num_param)
print('-------------------------------------------------------')
return
criterion = bdcn_loss2 # hed_loss2 #bdcn_loss2
optimizer = optim.Adam(model.parameters(),
lr=args.lr,
weight_decay=args.wd)
# Main training loop
seed=1021
adjust_lr = args.adjust_lr
lr2= args.lr
for epoch in range(ini_epoch,args.epochs):
if epoch%7==0:
seed = seed+1000
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
print("------ Random seed applied-------------")
# Create output directories
if adjust_lr is not None:
if epoch in adjust_lr:
lr2 = lr2*0.1
for param_group in optimizer.param_groups:
param_group['lr'] = lr2
output_dir_epoch = os.path.join(args.output_dir,args.train_data, str(epoch))
img_test_dir = os.path.join(output_dir_epoch, args.test_data + '_res')
os.makedirs(output_dir_epoch,exist_ok=True)
os.makedirs(img_test_dir,exist_ok=True)
validate_one_epoch(epoch,
dataloader_val,
model,
device,
img_test_dir,
arg=args)
avg_loss =train_one_epoch(epoch,
dataloader_train,
model,
criterion,
optimizer,
device,
args.log_interval_vis,
tb_writer,
args=args)
validate_one_epoch(epoch,
dataloader_val,
model,
device,
img_test_dir,
arg=args)
# Save model after end of every epoch
torch.save(model.module.state_dict() if hasattr(model, "module") else model.state_dict(),
os.path.join(output_dir_epoch, '{0}_model.pth'.format(epoch)))
if tb_writer is not None:
tb_writer.add_scalar('loss',
avg_loss,
epoch+1)
print('Current learning rate> ', optimizer.param_groups[0]['lr'])
num_param = count_parameters(model)
print('-------------------------------------------------------')
print('DexiNed, # of Parameters:')
print(num_param)
print('-------------------------------------------------------')
if __name__ == '__main__':
args = parse_args()
main(args)
|