File size: 29,215 Bytes
89c5d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
""" DexiNed architecture description


Created by: Xavier Soria Poma
Modified from: https://github.com/machrisaa/tensorflow-vgg
Autonomous University of Barcelona-Computer Vision Center
[email protected]/[email protected]
"""

import time
import os
import numpy as np

from legacy.utls.losses import *
from legacy.utls.utls import print_info, print_warning

slim = tf.contrib.slim


class dexined():

    def __init__(self, args):

        self.args = args
        self.utw = self.args.use_trained_model
        self.img_height =args.image_height
        self.img_width =args.image_width
        if args.model_state=='test':
            self.images = tf.placeholder(tf.float32, [None, self.args.image_height,
                                                      self.args.image_width, self.args.n_channels])
        else:
            self.images = tf.compat.v1.placeholder(tf.float32, [None, self.args.image_height,
                                                      self.args.image_width, self.args.n_channels])
        self.edgemaps = tf.compat.v1.placeholder(tf.float32, [None, self.args.image_height,
                                                    self.args.image_width, 1])
        self.define_model()

    def define_model(self, is_training=True):
        """ DexiNed architecture
        DexiNed is composed by six blocks, the two first blocks have two convolutional layers
        the rest of the blocks is composed by sub blocks and they have 2, 3, 3, 3 sub blocks
        """
        start_time = time.time()
        use_subpixel=self.args.use_subpixel
        weight_init =tf.random_normal_initializer(mean=0.0, stddev=0.01)
        with tf.compat.v1.variable_scope('Xpt') as sc:

            # ------------------------- Block1 ----------------------------------------
            self.conv1_1 = tf.layers.conv2d(self.images, filters=32, kernel_size=[3, 3],
                                        strides=(2, 2), bias_initializer=tf.constant_initializer(0.0),
                                        padding='SAME', name="conv1_1", kernel_initializer=weight_init) #  bx200x200x32, b=batch size
            self.conv1_1 = slim.batch_norm(self.conv1_1)
            self.conv1_1 = tf.nn.relu(self.conv1_1)

            self.conv1_2 = tf.layers.conv2d(self.conv1_1, filters=64, kernel_size=[3,3],
                                        strides=(1,1), bias_initializer=tf.constant_initializer(0.0),
                                        padding='SAME', name="conv1_2", kernel_initializer=weight_init)  # bx200x200x64
            self.conv1_2 = slim.batch_norm(self.conv1_2)
            self.conv1_2 = tf.nn.relu(self.conv1_2)

            self.output1 = self.side_layer(self.conv1_2,name='output1',filters=1, upscale=int(2 ** 1),
                                           strides=(1,1),kernel_size=[1,1],sub_pixel=use_subpixel,
                                           kernel_init=weight_init)  # bx400x400x1
            self.rconv1 = tf.layers.conv2d(
                self.conv1_2,filters=128, kernel_size=[1,1], activation=None,
                strides=(2,2), bias_initializer=tf.constant_initializer(0.0),
                padding='SAME', name="rconv1", kernel_initializer=weight_init)  # bx100x100x128 --Skip left
            self.rconv1 =slim.batch_norm(self.rconv1) # bx100x100x128 --Skip left

            # ------------------------- Block2 ----------------------------------------
            self.block2_xcp = self.conv1_2
            for k in range(1):
                self.block2_xcp = tf.layers.conv2d(
                    self.block2_xcp, filters=128, kernel_size=[3, 3],
                    strides=(1, 1), padding='same', name='conv_block2_{}'.format(k + 1),
                kernel_initializer=weight_init) # bx200x200x128
                self.block2_xcp = slim.batch_norm(self.block2_xcp)
                self.block2_xcp = tf.nn.relu(self.block2_xcp)

                self.block2_xcp = tf.layers.conv2d(
                    self.block2_xcp, filters=128, kernel_size=[3, 3],
                    strides=(1, 1), padding='same', name='conv2_block2_{}'.format(k + 1),
                kernel_initializer=weight_init) # bx200x200x128
                self.block2_xcp= slim.batch_norm(self.block2_xcp)

            self.maxpool2_1=slim.max_pool2d(self.block2_xcp,kernel_size=[3,3],stride=2, padding='same',
                                        scope='maxpool2_1') # bx100x100x128
            self.add2_1 = tf.add(self.maxpool2_1, self.rconv1)# with skip left
            self.output2 = self.side_layer(self.block2_xcp,filters=1,name='output2', upscale=int(2 ** 1),
                                           strides=(1,1),kernel_size=[1,1],sub_pixel=use_subpixel,
                                           kernel_init=weight_init) # bx400x400x1
            self.rconv2= tf.layers.conv2d(
                self.add2_1,filters=256, kernel_size=[1,1], activation=None,
                kernel_initializer=weight_init, strides=(2,2), bias_initializer=tf.constant_initializer(0.0),
                padding='SAME', name="rconv2")  # bx50x50x256 # skip left
            self.rconv2 = slim.batch_norm(self.rconv2)  # skip left

            # ------------------------- Block3 ----------------------------------------
            self.block3_xcp = self.add2_1
            self.addb2_4b3 = tf.layers.conv2d(
                self.maxpool2_1,filters=256, kernel_size=[1, 1], activation=None,
                kernel_initializer=weight_init, strides=(1, 1), bias_initializer=tf.constant_initializer(0.0),
                padding='SAME', name="add2conv_4b3") # 100x100x256 # skip right
            self.addb2_4b3 = slim.batch_norm(self.addb2_4b3) # skip right
            for k in range(2):

                self.block3_xcp=tf.nn.relu(self.block3_xcp)
                self.block3_xcp = tf.layers.conv2d(
                    self.block3_xcp, filters=256, kernel_size=[3, 3],
                    strides=(1, 1), padding='same', name='con1v_block3_{}'.format(k + 1),
                kernel_initializer=weight_init) # bx100x100x256
                self.block3_xcp = slim.batch_norm(self.block3_xcp)
                self.block3_xcp = tf.nn.relu(self.block3_xcp)

                self.block3_xcp = tf.layers.conv2d(
                    self.block3_xcp, filters=256, kernel_size=[3, 3],
                    strides=(1,1),padding='same',name='conv2_block3_{}'.format(k+1),
                kernel_initializer=weight_init)  # bx100x100x256
                self.block3_xcp = slim.batch_norm(self.block3_xcp)
                self.block3_xcp = tf.add(self.block3_xcp, self.addb2_4b3)/2 #  with  right skip

            self.maxpool3_1 = slim.max_pool2d(self.block3_xcp, kernel_size=[3, 3],stride=2, padding='same',
                                             scope='maxpool3_1')  # bx50x50x256
            self.add3_1 = tf.add(self.maxpool3_1, self.rconv2) # with before skip left
            self.rconv3 = tf.layers.conv2d(
                self.add3_1, filters=512, kernel_size=[1, 1], activation=None,
                kernel_initializer=weight_init, strides=(2, 2), bias_initializer=tf.constant_initializer(0.0),
                padding='SAME', name="rconv3")  # bx25x25x512  # skip left
            self.rconv3 = slim.batch_norm(self.rconv3) # skip left
            self.output3 = self.side_layer(self.block3_xcp, filters=1,name='output3', upscale=int(2 ** 2),
                                           strides=(1,1),kernel_size=[1,1],sub_pixel=use_subpixel,
                                           kernel_init=weight_init)   # bx400x400x1

            # ------------------------- Block4 ----------------------------------------
            self.conv_b2b4 = tf.layers.conv2d(
                self.maxpool2_1, filters=256, kernel_size=[1, 1], activation=None,
                kernel_initializer=weight_init, strides=(2, 2), bias_initializer=tf.constant_initializer(0.0),
                padding='SAME', name="conv_b2b4")  # bx50x50x256 # skip right
            self.block4_xcp= self.add3_1
            self.addb2b3 = tf.add(self.conv_b2b4, self.maxpool3_1)# skip right
            self.addb3_4b4 = tf.layers.conv2d(
                self.addb2b3, filters=512, kernel_size=[1, 1], activation=None,
                kernel_initializer=weight_init, strides=(1, 1), bias_initializer=tf.constant_initializer(0.0),
                padding='SAME', name="add3conv_4b4")  # bx50x50x512 # skip right
            self.addb3_4b4 = slim.batch_norm(self.addb3_4b4)# skip right
            for k in range(3):
                self.block4_xcp= tf.nn.relu(self.block4_xcp)
                self.block4_xcp = tf.layers.conv2d(
                    self.block4_xcp, filters=512, kernel_size=[3, 3], strides=(1, 1),
                    padding='same', name='conv1_block4_{}'.format(k + 1), kernel_initializer=weight_init)  # bx50x50x512
                self.block4_xcp = slim.batch_norm(self.block4_xcp)
                self.block4_xcp = tf.nn.relu(self.block4_xcp)

                self.block4_xcp = tf.layers.conv2d(
                    self.block4_xcp, filters=512, kernel_size=[3, 3], strides=(1, 1),
                    padding='same', name='conv2_block4_{}'.format(k+1), kernel_initializer=weight_init) # bx50x50x512
                self.block4_xcp = slim.batch_norm(self.block4_xcp)
                self.block4_xcp = tf.add(self.block4_xcp, self.addb3_4b4)/2 #  with  right skip

            self.maxpool4_1 = slim.max_pool2d(self.block4_xcp, kernel_size=[3, 3], stride=2, padding='same',
                                             scope='maxpool3_1')  # bx25x25x728, b=batch size
            self.add4_1 = tf.add(self.maxpool4_1, self.rconv3) # with skip left
            self.rconv4 = tf.layers.conv2d(
                self.add4_1, filters=512, kernel_size=[1, 1], activation=None,
                kernel_initializer=weight_init, strides=(1, 1), bias_initializer=tf.constant_initializer(0.0),
                padding='SAME', name="rconv4")  # bx25x25x512  # skip leff
            self.rconv4 = slim.batch_norm(self.rconv4)   # skip left

            self.output4 = self.side_layer(self.block4_xcp, filters=1,name='output4', upscale=int(2 ** 3),
                                           strides=(1,1),kernel_size=[1,1],sub_pixel=use_subpixel,
                                           kernel_init=weight_init)  # bx400x400x1

            # ------------------------- Block5 ----------------------------------------
            self.convb3_2ab4 = tf.layers.conv2d(
                self.conv_b2b4, filters=512, kernel_size=[1, 1], activation=None,
                kernel_initializer=weight_init, strides=(2, 2), bias_initializer=tf.constant_initializer(0.0),
                            padding='SAME', name="conv_b2b5")  # bx25x25x512  # skip right

            self.block5_xcp=self.add4_1
            self.addb2b5 =  tf.add(self.convb3_2ab4,self.maxpool4_1)  # skip right
            self.addb2b5 = tf.layers.conv2d(
                self.addb2b5, filters=512, kernel_size=[1, 1], activation=None,
                kernel_initializer=weight_init, strides=(1, 1), bias_initializer=tf.constant_initializer(0.0),
                padding='SAME', name="addb2b5")  # bx25x25x512# skip right
            self.addb2b5 = slim.batch_norm(self.addb2b5)# skip right
            for k in range(3):
                self.block5_xcp=tf.nn.relu(self.block5_xcp)
                self.block5_xcp= tf.layers.conv2d(
                    self.block5_xcp, filters=512, kernel_size=[3, 3],
                    strides=(1, 1),padding='SAME', name="conv1_block5{}".format(k+1),
                kernel_initializer=weight_init)  # bx25x25x512
                self.block5_xcp = slim.batch_norm(self.block5_xcp)
                self.block5_xcp=tf.nn.relu(self.block5_xcp)

                self.block5_xcp= tf.layers.conv2d(
                    self.block5_xcp, filters=512, kernel_size=[3, 3],
                    strides=(1, 1),padding='SAME', name="conv2_block5{}".format(k+1),
                kernel_initializer=weight_init)  # bx25x25x728
                self.block5_xcp = slim.batch_norm(self.block5_xcp)
                self.block5_xcp=tf.add(self.block5_xcp,self.addb2b5)/2 # wwith  right skip

            self.add5_1 = tf.add(self.block5_xcp, self.rconv4) # with skip left
            self.output5 = self.side_layer(self.block5_xcp, filters=1,name='output5', kernel_size=[1,1],
                                           upscale=int(2 ** 4), sub_pixel=use_subpixel, strides=(1,1),
                                           kernel_init=weight_init)

            # ------------------------- Block6 ----------------------------------------
            self.block6_xcp = self.add5_1
            self.block6_xcp = tf.layers.conv2d(
                self.block6_xcp, filters=256, kernel_size=[1, 1], activation=None,
                kernel_initializer=weight_init, strides=(1, 1), bias_initializer=tf.constant_initializer(0.0),
                padding='SAME', name="conv0_b6")  # bx25x25x256

            self.block6_xcp = slim.batch_norm(self.block6_xcp)
            self.addb25_2b6 = tf.layers.conv2d(
                self.block5_xcp, filters=256, kernel_size=[1, 1], activation=None,
                kernel_initializer=weight_init, strides=(1, 1), bias_initializer=tf.constant_initializer(0.0),
                padding='SAME', name="add2b6")  # bx25x25x256# skip right
            self.addb25_2b6 = slim.batch_norm(self.addb25_2b6)# skip right
            for k in range(3):
                self.block6_xcp = tf.nn.relu(self.block6_xcp)
                self.block6_xcp = tf.layers.conv2d(
                    self.block6_xcp, filters=256, kernel_size=[3, 3],
                    strides=(1, 1), padding='SAME', name="conv1_block6{}".format(k + 1),
                kernel_initializer=weight_init)  # bx25x25x256
                self.block6_xcp = slim.batch_norm(self.block6_xcp)
                self.block6_xcp = tf.nn.relu(self.block6_xcp)

                self.block6_xcp = tf.layers.conv2d(
                    self.block6_xcp, filters=256, kernel_size=[3, 3],
                    strides=(1, 1), padding='SAME', name="conv2_block6{}".format(k + 1),
                kernel_initializer=weight_init)  # bx25x25x256
                self.block6_xcp = slim.batch_norm(self.block6_xcp)
                self.block6_xcp = tf.add(self.block6_xcp, self.addb25_2b6) / 2 #  with  right skip

            self.output6 = self.side_layer(self.block6_xcp, filters=1, name='output6', kernel_size=[1, 1],
                                           upscale=int(2 ** 4), sub_pixel=use_subpixel, strides=(1, 1),
                                           kernel_init=weight_init)
            # ******************** End blocks *****************************************

            self.side_outputs = [self.output1, self.output2, self.output3,
                                 self.output4, self.output5,self.output6]

            self.fuse = tf.layers.conv2d(tf.concat(self.side_outputs, axis=3),filters=1,
                                        kernel_size=[1,1], name='fuse_1',strides=(1,1),padding='same',
                                        kernel_initializer=tf.constant_initializer(1 / len(self.side_outputs)))
            self.outputs = self.side_outputs + [self.fuse]

        print_info("Build model finished: {:.4f}s".format(time.time() - start_time))

    def max_pool(self, bottom, name):
        return tf.nn.max_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)

    def conv_layer(self, inputs, filters=None,kernel_size=None, depth_multiplier=None,
                   padding='same', activation=None, name=None,
                   kernel_initializer=None, strides=(1,1), separable_conv=False):

        if separable_conv:
            conv = tf.layers.separable_conv2d(
                inputs, filters=filters, kernel_size=kernel_size,
                depth_multiplier=depth_multiplier, padding=padding, name=name)
        else:
            conv= tf.layers.conv2d(inputs, filters=filters, kernel_size=kernel_size,
                             strides=strides,padding=padding, kernel_initializer=kernel_initializer, name=name)
        return conv

    def side_layer(self, inputs, filters=None,kernel_size=None, strides=(1,1),
                   name=None, upscale=None, sub_pixel=False,kernel_init=None):
        """
            https://github.com/s9xie/hed/blob/9e74dd710773d8d8a469ad905c76f4a7fa08f945/examples/hed/train_val.prototxt#L122
            1x1 conv followed with Deconvoltion layer to upscale the size of input image sans color
        """
        def upsample_block(inputs, filters=None,kernel_size=None, strides=(1,1),
                   name=None, upscale=None, sub_pixel=False):
            i=1
            scale=2
            sub_net=inputs
            output_filters=16
            if sub_pixel is None:
                # Upsampling by transpose_convolution
                while (scale<=upscale):
                    if scale==upscale:

                        sub_net = self.conv_layer(sub_net, filters=filters, kernel_size=kernel_size,
                                                  strides=strides,kernel_initializer=tf.truncated_normal_initializer(mean=0.0),
                                                  name=name + '_conv_{}'.format(i))  # bx100x100x64
                        biases = tf.Variable(tf.constant(0.0, shape=[filters], dtype=tf.float32),
                                             name=name + '_biases_{}'.format(i))
                        sub_net = tf.nn.bias_add(sub_net, biases)
                        sub_net = tf.nn.relu(sub_net)

                        sub_net = tf.layers.conv2d_transpose(
                            sub_net, filters=filters, kernel_size=[(upscale), (upscale)],
                            strides=(2, 2), padding="SAME", kernel_initializer=tf.truncated_normal_initializer(stddev=0.1),
                            name='{}_deconv_{}_{}'.format(name, upscale, i)) # upscale/2
                    else:

                        sub_net = self.conv_layer(sub_net, filters=output_filters,
                                                  kernel_size=kernel_size,kernel_initializer=kernel_init,
                                                  strides=strides, name=name + '_conv_{}'.format(i))  # bx100x100x64 tf.truncated_normal_initializer(mean=0.0, stddev=0.15)
                        biases = tf.Variable(tf.constant(0.0, shape=[output_filters], dtype=tf.float32),
                                             name=name + '_biases_{}'.format(i))

                        sub_net = tf.nn.bias_add(sub_net, biases)
                        sub_net = tf.nn.relu(sub_net)
                        # *
                        sub_net = tf.layers.conv2d_transpose(
                            sub_net, filters=output_filters, kernel_size=[(upscale), (upscale)],
                            strides=(2, 2), padding="SAME", kernel_initializer=kernel_init,
                            name='{}_deconv_{}_{}'.format(name, upscale, i))
                    i += 1
                    scale=2**i

            elif sub_pixel is False:
                # Upsampling by bilinear interpolation
                while (scale <= upscale):

                    if scale == upscale:
                        cur_shape = sub_net.get_shape().as_list()
                        sub_net = self.conv_layer(sub_net, filters=1,
                                                  kernel_size=3, kernel_initializer=kernel_init,
                                                  strides=strides, name=name + '_conv'+str(i))  # bx100x100x64 tf.truncated_normal_initializer(mean=0.0, stddev=0.15)
                        biases = tf.Variable(tf.constant(0.0, shape=[1], dtype=tf.float32),
                                             name=name + '_conv_b'+str(i))
                        sub_net = tf.nn.bias_add(sub_net, biases)
                        sub_net = tf.nn.relu(sub_net)
                        if cur_shape[1]== self.img_height and cur_shape[2]==self.img_width:
                            pass
                        else:
                            sub_net = self._upscore_layer(input=sub_net,n_outputs=1,stride=upscale,ksize=upscale,
                                                      name=name+'_bdconv'+str(i))
                    else:
                        cur_shape = sub_net.get_shape().as_list()
                        sub_net = self.conv_layer(sub_net, filters=output_filters,
                                                  kernel_size=3, kernel_initializer=kernel_init,
                                                  strides=strides, name=name + '_conv' + str(
                                i))  # bx100x100x64 tf.truncated_normal_initializer(mean=0.0, stddev=0.15)
                        biases = tf.Variable(tf.constant(0.0, shape=[output_filters], dtype=tf.float32),
                                             name=name + '_conv_b' + str(i))
                        sub_net = tf.nn.bias_add(sub_net, biases)
                        sub_net = tf.nn.relu(sub_net)
                        if cur_shape[1] == self.img_height and cur_shape[2] == self.img_width:
                            pass
                        else:
                            sub_net = self._upscore_layer(input=sub_net, n_outputs=output_filters, stride=upscale, ksize=upscale,
                                                          name=name + '_bdconv' + str(i))
                    i += 1
                    scale = 2 ** i

            elif sub_pixel is True:
                # Upsampling by subPixel convolution
                while (scale <= upscale):
                    if scale == upscale:
                        sub_net = self.conv_layer(sub_net, filters=4,
                                                  kernel_size=3, kernel_initializer=kernel_init,
                                                  strides=strides, name=name + '_conv'+str(i))  # bx100x100x64 tf.truncated_normal_initializer(mean=0.0, stddev=0.15)
                        biases = tf.Variable(tf.constant(0.0, shape=[4], dtype=tf.float32),
                                             name=name + '_conv_b'+str(i))
                        sub_net = tf.nn.bias_add(sub_net, biases)
                        sub_net = tf.nn.relu(sub_net)
                        _err_log = "SubpixelConv2d: The number of input channels == (scale x scale)" \
                                   " x The number of output channels"
                        r = 2
                        if filters >= 1:
                            if int(sub_net.get_shape()[-1]) != int(r ** 2 * filters):
                                raise Exception(_err_log)
                            sub_net = tf.depth_to_space(sub_net, r)
                        else:
                            raise Exception(' the output channel is not setted')
                    else:

                        sub_net = self.conv_layer(
                            sub_net, filters=32, kernel_size=3, kernel_initializer=kernel_init,
                            strides=strides, name=name + '_conv' + str(i))  # bx100x100x32
                        biases = tf.Variable(tf.constant(0.0, shape=[32], dtype=tf.float32),
                                             name=name + '_conv_b' + str(i))
                        sub_net = tf.nn.bias_add(sub_net, biases)
                        sub_net = tf.nn.relu(sub_net)
                        _err_log = "SubpixelConv2d: The number of input channels == (scale x scale)" \
                                   " x The number of output channels"
                        r = 2
                        sp_filter =8
                        if sp_filter >= 1:
                            if int(sub_net.get_shape()[-1]) != int(r ** 2 * sp_filter):
                                raise Exception(_err_log)
                            sub_net = tf.nn.depth_to_space(sub_net, r)
                        else:
                            raise Exception(' the output channel is not setted')
                    i += 1
                    scale = 2 ** i
            else:
                raise NotImplementedError
            return sub_net
        classifier = upsample_block(inputs, filters=filters, kernel_size=kernel_size, strides=strides,
                                        name=name, upscale=upscale, sub_pixel=sub_pixel)
        return classifier

    def _upscore_layer(self, input, n_outputs, name,
                       ksize=4, stride=2,shape=None):
        strides = [1, stride, stride, 1]
        in_features = input.get_shape().as_list()[3]

        if shape is None:
            # Compute shape out of Bottom
            in_shape = tf.shape(input)
            ot_shape = input.get_shape().as_list()

            h = ((ot_shape[1] - 1) * stride) + 1
            w = ((ot_shape[2] - 1) * stride) + 1
            # new_shape = [in_shape[0], h, w, n_outputs]
            new_shape = [in_shape[0], self.img_height, self.img_width, n_outputs] #output_shape=[,]
        else:
            new_shape = [shape[0], shape[1], shape[2], n_outputs]
        output_shape = tf.stack(new_shape)

        f_shape = [ksize, ksize, n_outputs, in_features]
        # create
        num_input = ksize * ksize * in_features / stride
        stddev = (2 / num_input) ** 0.5
        weights = self.get_deconv_filter(f_shape,name=name+'_Wb')
        deconv = tf.nn.conv2d_transpose(input,weights, output_shape,
                                        strides=strides, padding='SAME', name=name)
        # _activation_summary(deconv)
        return deconv

    def get_deconv_filter(self, f_shape,name=''):
        width = f_shape[0]
        heigh = f_shape[0]
        f = np.ceil(width / 2.0)
        c = (2 * f - 1 - f % 2) / (2.0 * f)
        bilinear = np.zeros([f_shape[0], f_shape[1]])
        for x in range(width):
            for y in range(heigh):
                value = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
                bilinear[x, y] = value
        weights = np.zeros(f_shape)
        for i in range(f_shape[2]):
            weights[:, :, i, i] = bilinear

        init = tf.constant_initializer(value=weights,
                                       dtype=tf.float32)

        return tf.get_variable(name=name, initializer=init, shape=weights.shape)

    def setup_testing(self, session):
        """
            Apply sigmoid non-linearity to side layer ouputs + fuse layer outputs for predictions
        """
        self.predictions = []

        for idx, b in enumerate(self.outputs):
            output = tf.nn.sigmoid(b, name='output_{}'.format(idx))
            self.predictions.append(output)

    def setup_training(self, session):
        """
            Apply sigmoid non-linearity to side layer ouputs + fuse layer outputs
            Compute total loss := side_layer_loss + fuse_layer_loss
            Compute predicted edge maps from fuse layer as pseudo performance metric to track
        """
        self.predictions = []
        self.loss = 0
        self.fuse_output = []
        self.losses=[]

        print_warning('Deep supervision application set to {}'.format(self.args.deep_supervision))
        ci=np.arange(len(self.side_outputs))
        for idx, b in enumerate(self.side_outputs):
            output = tf.nn.sigmoid(b, name='output_{}'.format(idx))
            if self.args.deep_supervision and idx in ci:
                cost = sigmoid_cross_entropy_balanced(b, self.edgemaps, name='cross_entropy{}'.format(idx)) # Deep supervision
                self.loss += (self.args.loss_weights * cost) # Deep supervision
                self.predictions.append(output)
            else:
                self.predictions.append(output)

        # loss for the last side
        self.fuse_output = tf.nn.sigmoid(self.fuse, name='fuse')  # self by me
        fuse_cost = sigmoid_cross_entropy_balanced(self.fuse, self.edgemaps, name='cross_entropy_fuse')

        self.predictions.append(self.fuse_output)
        self.loss += (self.args.loss_weights * fuse_cost) if self.args.deep_supervision else  fuse_cost# deep supervision

        pred = tf.cast(tf.greater(self.fuse_output, 0.5), tf.int32, name='predictions')
        error = tf.cast(tf.not_equal(pred, tf.cast(self.edgemaps, tf.int32)), tf.float32)
        self.error = tf.reduce_mean(error, name='pixel_error')

        tf.compat.v1.summary.scalar('Training', self.loss)
        tf.compat.v1.summary.scalar('Validation', self.error)

        self.merged_summary = tf.compat.v1.summary.merge_all()

        self.train_log_dir = os.path.join(self.args.logs_dir,
                                      os.path.join(self.args.model_name+'_'+self.args.train_dataset,'train'))
        self.val_log_dir = os.path.join(self.args.logs_dir,
                                    os.path.join(self.args.model_name+'_'+self.args.train_dataset, 'val'))

        if not os.path.exists(self.train_log_dir):
            os.makedirs(self.train_log_dir)
        if not os.path.exists(self.val_log_dir):
            os.makedirs(self.val_log_dir)
        self.train_writer = tf.compat.v1.summary.FileWriter(self.train_log_dir, session.graph)
        self.val_writer = tf.compat.v1.summary.FileWriter(self.val_log_dir)