Spaces:
Configuration error
Configuration error
File size: 29,215 Bytes
89c5d90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
""" DexiNed architecture description
Created by: Xavier Soria Poma
Modified from: https://github.com/machrisaa/tensorflow-vgg
Autonomous University of Barcelona-Computer Vision Center
[email protected]/[email protected]
"""
import time
import os
import numpy as np
from legacy.utls.losses import *
from legacy.utls.utls import print_info, print_warning
slim = tf.contrib.slim
class dexined():
def __init__(self, args):
self.args = args
self.utw = self.args.use_trained_model
self.img_height =args.image_height
self.img_width =args.image_width
if args.model_state=='test':
self.images = tf.placeholder(tf.float32, [None, self.args.image_height,
self.args.image_width, self.args.n_channels])
else:
self.images = tf.compat.v1.placeholder(tf.float32, [None, self.args.image_height,
self.args.image_width, self.args.n_channels])
self.edgemaps = tf.compat.v1.placeholder(tf.float32, [None, self.args.image_height,
self.args.image_width, 1])
self.define_model()
def define_model(self, is_training=True):
""" DexiNed architecture
DexiNed is composed by six blocks, the two first blocks have two convolutional layers
the rest of the blocks is composed by sub blocks and they have 2, 3, 3, 3 sub blocks
"""
start_time = time.time()
use_subpixel=self.args.use_subpixel
weight_init =tf.random_normal_initializer(mean=0.0, stddev=0.01)
with tf.compat.v1.variable_scope('Xpt') as sc:
# ------------------------- Block1 ----------------------------------------
self.conv1_1 = tf.layers.conv2d(self.images, filters=32, kernel_size=[3, 3],
strides=(2, 2), bias_initializer=tf.constant_initializer(0.0),
padding='SAME', name="conv1_1", kernel_initializer=weight_init) # bx200x200x32, b=batch size
self.conv1_1 = slim.batch_norm(self.conv1_1)
self.conv1_1 = tf.nn.relu(self.conv1_1)
self.conv1_2 = tf.layers.conv2d(self.conv1_1, filters=64, kernel_size=[3,3],
strides=(1,1), bias_initializer=tf.constant_initializer(0.0),
padding='SAME', name="conv1_2", kernel_initializer=weight_init) # bx200x200x64
self.conv1_2 = slim.batch_norm(self.conv1_2)
self.conv1_2 = tf.nn.relu(self.conv1_2)
self.output1 = self.side_layer(self.conv1_2,name='output1',filters=1, upscale=int(2 ** 1),
strides=(1,1),kernel_size=[1,1],sub_pixel=use_subpixel,
kernel_init=weight_init) # bx400x400x1
self.rconv1 = tf.layers.conv2d(
self.conv1_2,filters=128, kernel_size=[1,1], activation=None,
strides=(2,2), bias_initializer=tf.constant_initializer(0.0),
padding='SAME', name="rconv1", kernel_initializer=weight_init) # bx100x100x128 --Skip left
self.rconv1 =slim.batch_norm(self.rconv1) # bx100x100x128 --Skip left
# ------------------------- Block2 ----------------------------------------
self.block2_xcp = self.conv1_2
for k in range(1):
self.block2_xcp = tf.layers.conv2d(
self.block2_xcp, filters=128, kernel_size=[3, 3],
strides=(1, 1), padding='same', name='conv_block2_{}'.format(k + 1),
kernel_initializer=weight_init) # bx200x200x128
self.block2_xcp = slim.batch_norm(self.block2_xcp)
self.block2_xcp = tf.nn.relu(self.block2_xcp)
self.block2_xcp = tf.layers.conv2d(
self.block2_xcp, filters=128, kernel_size=[3, 3],
strides=(1, 1), padding='same', name='conv2_block2_{}'.format(k + 1),
kernel_initializer=weight_init) # bx200x200x128
self.block2_xcp= slim.batch_norm(self.block2_xcp)
self.maxpool2_1=slim.max_pool2d(self.block2_xcp,kernel_size=[3,3],stride=2, padding='same',
scope='maxpool2_1') # bx100x100x128
self.add2_1 = tf.add(self.maxpool2_1, self.rconv1)# with skip left
self.output2 = self.side_layer(self.block2_xcp,filters=1,name='output2', upscale=int(2 ** 1),
strides=(1,1),kernel_size=[1,1],sub_pixel=use_subpixel,
kernel_init=weight_init) # bx400x400x1
self.rconv2= tf.layers.conv2d(
self.add2_1,filters=256, kernel_size=[1,1], activation=None,
kernel_initializer=weight_init, strides=(2,2), bias_initializer=tf.constant_initializer(0.0),
padding='SAME', name="rconv2") # bx50x50x256 # skip left
self.rconv2 = slim.batch_norm(self.rconv2) # skip left
# ------------------------- Block3 ----------------------------------------
self.block3_xcp = self.add2_1
self.addb2_4b3 = tf.layers.conv2d(
self.maxpool2_1,filters=256, kernel_size=[1, 1], activation=None,
kernel_initializer=weight_init, strides=(1, 1), bias_initializer=tf.constant_initializer(0.0),
padding='SAME', name="add2conv_4b3") # 100x100x256 # skip right
self.addb2_4b3 = slim.batch_norm(self.addb2_4b3) # skip right
for k in range(2):
self.block3_xcp=tf.nn.relu(self.block3_xcp)
self.block3_xcp = tf.layers.conv2d(
self.block3_xcp, filters=256, kernel_size=[3, 3],
strides=(1, 1), padding='same', name='con1v_block3_{}'.format(k + 1),
kernel_initializer=weight_init) # bx100x100x256
self.block3_xcp = slim.batch_norm(self.block3_xcp)
self.block3_xcp = tf.nn.relu(self.block3_xcp)
self.block3_xcp = tf.layers.conv2d(
self.block3_xcp, filters=256, kernel_size=[3, 3],
strides=(1,1),padding='same',name='conv2_block3_{}'.format(k+1),
kernel_initializer=weight_init) # bx100x100x256
self.block3_xcp = slim.batch_norm(self.block3_xcp)
self.block3_xcp = tf.add(self.block3_xcp, self.addb2_4b3)/2 # with right skip
self.maxpool3_1 = slim.max_pool2d(self.block3_xcp, kernel_size=[3, 3],stride=2, padding='same',
scope='maxpool3_1') # bx50x50x256
self.add3_1 = tf.add(self.maxpool3_1, self.rconv2) # with before skip left
self.rconv3 = tf.layers.conv2d(
self.add3_1, filters=512, kernel_size=[1, 1], activation=None,
kernel_initializer=weight_init, strides=(2, 2), bias_initializer=tf.constant_initializer(0.0),
padding='SAME', name="rconv3") # bx25x25x512 # skip left
self.rconv3 = slim.batch_norm(self.rconv3) # skip left
self.output3 = self.side_layer(self.block3_xcp, filters=1,name='output3', upscale=int(2 ** 2),
strides=(1,1),kernel_size=[1,1],sub_pixel=use_subpixel,
kernel_init=weight_init) # bx400x400x1
# ------------------------- Block4 ----------------------------------------
self.conv_b2b4 = tf.layers.conv2d(
self.maxpool2_1, filters=256, kernel_size=[1, 1], activation=None,
kernel_initializer=weight_init, strides=(2, 2), bias_initializer=tf.constant_initializer(0.0),
padding='SAME', name="conv_b2b4") # bx50x50x256 # skip right
self.block4_xcp= self.add3_1
self.addb2b3 = tf.add(self.conv_b2b4, self.maxpool3_1)# skip right
self.addb3_4b4 = tf.layers.conv2d(
self.addb2b3, filters=512, kernel_size=[1, 1], activation=None,
kernel_initializer=weight_init, strides=(1, 1), bias_initializer=tf.constant_initializer(0.0),
padding='SAME', name="add3conv_4b4") # bx50x50x512 # skip right
self.addb3_4b4 = slim.batch_norm(self.addb3_4b4)# skip right
for k in range(3):
self.block4_xcp= tf.nn.relu(self.block4_xcp)
self.block4_xcp = tf.layers.conv2d(
self.block4_xcp, filters=512, kernel_size=[3, 3], strides=(1, 1),
padding='same', name='conv1_block4_{}'.format(k + 1), kernel_initializer=weight_init) # bx50x50x512
self.block4_xcp = slim.batch_norm(self.block4_xcp)
self.block4_xcp = tf.nn.relu(self.block4_xcp)
self.block4_xcp = tf.layers.conv2d(
self.block4_xcp, filters=512, kernel_size=[3, 3], strides=(1, 1),
padding='same', name='conv2_block4_{}'.format(k+1), kernel_initializer=weight_init) # bx50x50x512
self.block4_xcp = slim.batch_norm(self.block4_xcp)
self.block4_xcp = tf.add(self.block4_xcp, self.addb3_4b4)/2 # with right skip
self.maxpool4_1 = slim.max_pool2d(self.block4_xcp, kernel_size=[3, 3], stride=2, padding='same',
scope='maxpool3_1') # bx25x25x728, b=batch size
self.add4_1 = tf.add(self.maxpool4_1, self.rconv3) # with skip left
self.rconv4 = tf.layers.conv2d(
self.add4_1, filters=512, kernel_size=[1, 1], activation=None,
kernel_initializer=weight_init, strides=(1, 1), bias_initializer=tf.constant_initializer(0.0),
padding='SAME', name="rconv4") # bx25x25x512 # skip leff
self.rconv4 = slim.batch_norm(self.rconv4) # skip left
self.output4 = self.side_layer(self.block4_xcp, filters=1,name='output4', upscale=int(2 ** 3),
strides=(1,1),kernel_size=[1,1],sub_pixel=use_subpixel,
kernel_init=weight_init) # bx400x400x1
# ------------------------- Block5 ----------------------------------------
self.convb3_2ab4 = tf.layers.conv2d(
self.conv_b2b4, filters=512, kernel_size=[1, 1], activation=None,
kernel_initializer=weight_init, strides=(2, 2), bias_initializer=tf.constant_initializer(0.0),
padding='SAME', name="conv_b2b5") # bx25x25x512 # skip right
self.block5_xcp=self.add4_1
self.addb2b5 = tf.add(self.convb3_2ab4,self.maxpool4_1) # skip right
self.addb2b5 = tf.layers.conv2d(
self.addb2b5, filters=512, kernel_size=[1, 1], activation=None,
kernel_initializer=weight_init, strides=(1, 1), bias_initializer=tf.constant_initializer(0.0),
padding='SAME', name="addb2b5") # bx25x25x512# skip right
self.addb2b5 = slim.batch_norm(self.addb2b5)# skip right
for k in range(3):
self.block5_xcp=tf.nn.relu(self.block5_xcp)
self.block5_xcp= tf.layers.conv2d(
self.block5_xcp, filters=512, kernel_size=[3, 3],
strides=(1, 1),padding='SAME', name="conv1_block5{}".format(k+1),
kernel_initializer=weight_init) # bx25x25x512
self.block5_xcp = slim.batch_norm(self.block5_xcp)
self.block5_xcp=tf.nn.relu(self.block5_xcp)
self.block5_xcp= tf.layers.conv2d(
self.block5_xcp, filters=512, kernel_size=[3, 3],
strides=(1, 1),padding='SAME', name="conv2_block5{}".format(k+1),
kernel_initializer=weight_init) # bx25x25x728
self.block5_xcp = slim.batch_norm(self.block5_xcp)
self.block5_xcp=tf.add(self.block5_xcp,self.addb2b5)/2 # wwith right skip
self.add5_1 = tf.add(self.block5_xcp, self.rconv4) # with skip left
self.output5 = self.side_layer(self.block5_xcp, filters=1,name='output5', kernel_size=[1,1],
upscale=int(2 ** 4), sub_pixel=use_subpixel, strides=(1,1),
kernel_init=weight_init)
# ------------------------- Block6 ----------------------------------------
self.block6_xcp = self.add5_1
self.block6_xcp = tf.layers.conv2d(
self.block6_xcp, filters=256, kernel_size=[1, 1], activation=None,
kernel_initializer=weight_init, strides=(1, 1), bias_initializer=tf.constant_initializer(0.0),
padding='SAME', name="conv0_b6") # bx25x25x256
self.block6_xcp = slim.batch_norm(self.block6_xcp)
self.addb25_2b6 = tf.layers.conv2d(
self.block5_xcp, filters=256, kernel_size=[1, 1], activation=None,
kernel_initializer=weight_init, strides=(1, 1), bias_initializer=tf.constant_initializer(0.0),
padding='SAME', name="add2b6") # bx25x25x256# skip right
self.addb25_2b6 = slim.batch_norm(self.addb25_2b6)# skip right
for k in range(3):
self.block6_xcp = tf.nn.relu(self.block6_xcp)
self.block6_xcp = tf.layers.conv2d(
self.block6_xcp, filters=256, kernel_size=[3, 3],
strides=(1, 1), padding='SAME', name="conv1_block6{}".format(k + 1),
kernel_initializer=weight_init) # bx25x25x256
self.block6_xcp = slim.batch_norm(self.block6_xcp)
self.block6_xcp = tf.nn.relu(self.block6_xcp)
self.block6_xcp = tf.layers.conv2d(
self.block6_xcp, filters=256, kernel_size=[3, 3],
strides=(1, 1), padding='SAME', name="conv2_block6{}".format(k + 1),
kernel_initializer=weight_init) # bx25x25x256
self.block6_xcp = slim.batch_norm(self.block6_xcp)
self.block6_xcp = tf.add(self.block6_xcp, self.addb25_2b6) / 2 # with right skip
self.output6 = self.side_layer(self.block6_xcp, filters=1, name='output6', kernel_size=[1, 1],
upscale=int(2 ** 4), sub_pixel=use_subpixel, strides=(1, 1),
kernel_init=weight_init)
# ******************** End blocks *****************************************
self.side_outputs = [self.output1, self.output2, self.output3,
self.output4, self.output5,self.output6]
self.fuse = tf.layers.conv2d(tf.concat(self.side_outputs, axis=3),filters=1,
kernel_size=[1,1], name='fuse_1',strides=(1,1),padding='same',
kernel_initializer=tf.constant_initializer(1 / len(self.side_outputs)))
self.outputs = self.side_outputs + [self.fuse]
print_info("Build model finished: {:.4f}s".format(time.time() - start_time))
def max_pool(self, bottom, name):
return tf.nn.max_pool(bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name)
def conv_layer(self, inputs, filters=None,kernel_size=None, depth_multiplier=None,
padding='same', activation=None, name=None,
kernel_initializer=None, strides=(1,1), separable_conv=False):
if separable_conv:
conv = tf.layers.separable_conv2d(
inputs, filters=filters, kernel_size=kernel_size,
depth_multiplier=depth_multiplier, padding=padding, name=name)
else:
conv= tf.layers.conv2d(inputs, filters=filters, kernel_size=kernel_size,
strides=strides,padding=padding, kernel_initializer=kernel_initializer, name=name)
return conv
def side_layer(self, inputs, filters=None,kernel_size=None, strides=(1,1),
name=None, upscale=None, sub_pixel=False,kernel_init=None):
"""
https://github.com/s9xie/hed/blob/9e74dd710773d8d8a469ad905c76f4a7fa08f945/examples/hed/train_val.prototxt#L122
1x1 conv followed with Deconvoltion layer to upscale the size of input image sans color
"""
def upsample_block(inputs, filters=None,kernel_size=None, strides=(1,1),
name=None, upscale=None, sub_pixel=False):
i=1
scale=2
sub_net=inputs
output_filters=16
if sub_pixel is None:
# Upsampling by transpose_convolution
while (scale<=upscale):
if scale==upscale:
sub_net = self.conv_layer(sub_net, filters=filters, kernel_size=kernel_size,
strides=strides,kernel_initializer=tf.truncated_normal_initializer(mean=0.0),
name=name + '_conv_{}'.format(i)) # bx100x100x64
biases = tf.Variable(tf.constant(0.0, shape=[filters], dtype=tf.float32),
name=name + '_biases_{}'.format(i))
sub_net = tf.nn.bias_add(sub_net, biases)
sub_net = tf.nn.relu(sub_net)
sub_net = tf.layers.conv2d_transpose(
sub_net, filters=filters, kernel_size=[(upscale), (upscale)],
strides=(2, 2), padding="SAME", kernel_initializer=tf.truncated_normal_initializer(stddev=0.1),
name='{}_deconv_{}_{}'.format(name, upscale, i)) # upscale/2
else:
sub_net = self.conv_layer(sub_net, filters=output_filters,
kernel_size=kernel_size,kernel_initializer=kernel_init,
strides=strides, name=name + '_conv_{}'.format(i)) # bx100x100x64 tf.truncated_normal_initializer(mean=0.0, stddev=0.15)
biases = tf.Variable(tf.constant(0.0, shape=[output_filters], dtype=tf.float32),
name=name + '_biases_{}'.format(i))
sub_net = tf.nn.bias_add(sub_net, biases)
sub_net = tf.nn.relu(sub_net)
# *
sub_net = tf.layers.conv2d_transpose(
sub_net, filters=output_filters, kernel_size=[(upscale), (upscale)],
strides=(2, 2), padding="SAME", kernel_initializer=kernel_init,
name='{}_deconv_{}_{}'.format(name, upscale, i))
i += 1
scale=2**i
elif sub_pixel is False:
# Upsampling by bilinear interpolation
while (scale <= upscale):
if scale == upscale:
cur_shape = sub_net.get_shape().as_list()
sub_net = self.conv_layer(sub_net, filters=1,
kernel_size=3, kernel_initializer=kernel_init,
strides=strides, name=name + '_conv'+str(i)) # bx100x100x64 tf.truncated_normal_initializer(mean=0.0, stddev=0.15)
biases = tf.Variable(tf.constant(0.0, shape=[1], dtype=tf.float32),
name=name + '_conv_b'+str(i))
sub_net = tf.nn.bias_add(sub_net, biases)
sub_net = tf.nn.relu(sub_net)
if cur_shape[1]== self.img_height and cur_shape[2]==self.img_width:
pass
else:
sub_net = self._upscore_layer(input=sub_net,n_outputs=1,stride=upscale,ksize=upscale,
name=name+'_bdconv'+str(i))
else:
cur_shape = sub_net.get_shape().as_list()
sub_net = self.conv_layer(sub_net, filters=output_filters,
kernel_size=3, kernel_initializer=kernel_init,
strides=strides, name=name + '_conv' + str(
i)) # bx100x100x64 tf.truncated_normal_initializer(mean=0.0, stddev=0.15)
biases = tf.Variable(tf.constant(0.0, shape=[output_filters], dtype=tf.float32),
name=name + '_conv_b' + str(i))
sub_net = tf.nn.bias_add(sub_net, biases)
sub_net = tf.nn.relu(sub_net)
if cur_shape[1] == self.img_height and cur_shape[2] == self.img_width:
pass
else:
sub_net = self._upscore_layer(input=sub_net, n_outputs=output_filters, stride=upscale, ksize=upscale,
name=name + '_bdconv' + str(i))
i += 1
scale = 2 ** i
elif sub_pixel is True:
# Upsampling by subPixel convolution
while (scale <= upscale):
if scale == upscale:
sub_net = self.conv_layer(sub_net, filters=4,
kernel_size=3, kernel_initializer=kernel_init,
strides=strides, name=name + '_conv'+str(i)) # bx100x100x64 tf.truncated_normal_initializer(mean=0.0, stddev=0.15)
biases = tf.Variable(tf.constant(0.0, shape=[4], dtype=tf.float32),
name=name + '_conv_b'+str(i))
sub_net = tf.nn.bias_add(sub_net, biases)
sub_net = tf.nn.relu(sub_net)
_err_log = "SubpixelConv2d: The number of input channels == (scale x scale)" \
" x The number of output channels"
r = 2
if filters >= 1:
if int(sub_net.get_shape()[-1]) != int(r ** 2 * filters):
raise Exception(_err_log)
sub_net = tf.depth_to_space(sub_net, r)
else:
raise Exception(' the output channel is not setted')
else:
sub_net = self.conv_layer(
sub_net, filters=32, kernel_size=3, kernel_initializer=kernel_init,
strides=strides, name=name + '_conv' + str(i)) # bx100x100x32
biases = tf.Variable(tf.constant(0.0, shape=[32], dtype=tf.float32),
name=name + '_conv_b' + str(i))
sub_net = tf.nn.bias_add(sub_net, biases)
sub_net = tf.nn.relu(sub_net)
_err_log = "SubpixelConv2d: The number of input channels == (scale x scale)" \
" x The number of output channels"
r = 2
sp_filter =8
if sp_filter >= 1:
if int(sub_net.get_shape()[-1]) != int(r ** 2 * sp_filter):
raise Exception(_err_log)
sub_net = tf.nn.depth_to_space(sub_net, r)
else:
raise Exception(' the output channel is not setted')
i += 1
scale = 2 ** i
else:
raise NotImplementedError
return sub_net
classifier = upsample_block(inputs, filters=filters, kernel_size=kernel_size, strides=strides,
name=name, upscale=upscale, sub_pixel=sub_pixel)
return classifier
def _upscore_layer(self, input, n_outputs, name,
ksize=4, stride=2,shape=None):
strides = [1, stride, stride, 1]
in_features = input.get_shape().as_list()[3]
if shape is None:
# Compute shape out of Bottom
in_shape = tf.shape(input)
ot_shape = input.get_shape().as_list()
h = ((ot_shape[1] - 1) * stride) + 1
w = ((ot_shape[2] - 1) * stride) + 1
# new_shape = [in_shape[0], h, w, n_outputs]
new_shape = [in_shape[0], self.img_height, self.img_width, n_outputs] #output_shape=[,]
else:
new_shape = [shape[0], shape[1], shape[2], n_outputs]
output_shape = tf.stack(new_shape)
f_shape = [ksize, ksize, n_outputs, in_features]
# create
num_input = ksize * ksize * in_features / stride
stddev = (2 / num_input) ** 0.5
weights = self.get_deconv_filter(f_shape,name=name+'_Wb')
deconv = tf.nn.conv2d_transpose(input,weights, output_shape,
strides=strides, padding='SAME', name=name)
# _activation_summary(deconv)
return deconv
def get_deconv_filter(self, f_shape,name=''):
width = f_shape[0]
heigh = f_shape[0]
f = np.ceil(width / 2.0)
c = (2 * f - 1 - f % 2) / (2.0 * f)
bilinear = np.zeros([f_shape[0], f_shape[1]])
for x in range(width):
for y in range(heigh):
value = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
bilinear[x, y] = value
weights = np.zeros(f_shape)
for i in range(f_shape[2]):
weights[:, :, i, i] = bilinear
init = tf.constant_initializer(value=weights,
dtype=tf.float32)
return tf.get_variable(name=name, initializer=init, shape=weights.shape)
def setup_testing(self, session):
"""
Apply sigmoid non-linearity to side layer ouputs + fuse layer outputs for predictions
"""
self.predictions = []
for idx, b in enumerate(self.outputs):
output = tf.nn.sigmoid(b, name='output_{}'.format(idx))
self.predictions.append(output)
def setup_training(self, session):
"""
Apply sigmoid non-linearity to side layer ouputs + fuse layer outputs
Compute total loss := side_layer_loss + fuse_layer_loss
Compute predicted edge maps from fuse layer as pseudo performance metric to track
"""
self.predictions = []
self.loss = 0
self.fuse_output = []
self.losses=[]
print_warning('Deep supervision application set to {}'.format(self.args.deep_supervision))
ci=np.arange(len(self.side_outputs))
for idx, b in enumerate(self.side_outputs):
output = tf.nn.sigmoid(b, name='output_{}'.format(idx))
if self.args.deep_supervision and idx in ci:
cost = sigmoid_cross_entropy_balanced(b, self.edgemaps, name='cross_entropy{}'.format(idx)) # Deep supervision
self.loss += (self.args.loss_weights * cost) # Deep supervision
self.predictions.append(output)
else:
self.predictions.append(output)
# loss for the last side
self.fuse_output = tf.nn.sigmoid(self.fuse, name='fuse') # self by me
fuse_cost = sigmoid_cross_entropy_balanced(self.fuse, self.edgemaps, name='cross_entropy_fuse')
self.predictions.append(self.fuse_output)
self.loss += (self.args.loss_weights * fuse_cost) if self.args.deep_supervision else fuse_cost# deep supervision
pred = tf.cast(tf.greater(self.fuse_output, 0.5), tf.int32, name='predictions')
error = tf.cast(tf.not_equal(pred, tf.cast(self.edgemaps, tf.int32)), tf.float32)
self.error = tf.reduce_mean(error, name='pixel_error')
tf.compat.v1.summary.scalar('Training', self.loss)
tf.compat.v1.summary.scalar('Validation', self.error)
self.merged_summary = tf.compat.v1.summary.merge_all()
self.train_log_dir = os.path.join(self.args.logs_dir,
os.path.join(self.args.model_name+'_'+self.args.train_dataset,'train'))
self.val_log_dir = os.path.join(self.args.logs_dir,
os.path.join(self.args.model_name+'_'+self.args.train_dataset, 'val'))
if not os.path.exists(self.train_log_dir):
os.makedirs(self.train_log_dir)
if not os.path.exists(self.val_log_dir):
os.makedirs(self.val_log_dir)
self.train_writer = tf.compat.v1.summary.FileWriter(self.train_log_dir, session.graph)
self.val_writer = tf.compat.v1.summary.FileWriter(self.val_log_dir) |