Spaces:
Configuration error
Configuration error
File size: 18,606 Bytes
89c5d90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
import os
import random
import cv2
import numpy as np
import torch
from torch.utils.data import Dataset
import json
DATASET_NAMES = [
'BIPED',
'BSDS',
'BRIND',
'BSDS300',
'CID',
'DCD',
'MDBD', #5
'PASCAL',
'NYUD',
'CLASSIC'
] # 8
def dataset_info(dataset_name, is_linux=True):
if is_linux:
config = {
'BSDS': {
'img_height': 512, #321
'img_width': 512, #481
'train_list': 'train_pair.lst',
'test_list': 'test_pair.lst',
'data_dir': '/opt/dataset/BSDS', # mean_rgb
'yita': 0.5
},
'BRIND': {
'img_height': 512, # 321
'img_width': 512, # 481
'train_list': 'train_pair2.lst',
'test_list': 'test_pair.lst',
'data_dir': '/opt/dataset/BRIND', # mean_rgb
'yita': 0.5
},
'BSDS300': {
'img_height': 512, #321
'img_width': 512, #481
'test_list': 'test_pair.lst',
'train_list': None,
'data_dir': '/opt/dataset/BSDS300', # NIR
'yita': 0.5
},
'PASCAL': {
'img_height': 416, # 375
'img_width': 512, #500
'test_list': 'test_pair.lst',
'train_list': None,
'data_dir': '/opt/dataset/PASCAL', # mean_rgb
'yita': 0.3
},
'CID': {
'img_height': 512,
'img_width': 512,
'test_list': 'test_pair.lst',
'train_list': None,
'data_dir': '/opt/dataset/CID', # mean_rgb
'yita': 0.3
},
'NYUD': {
'img_height': 448,#425
'img_width': 560,#560
'test_list': 'test_pair.lst',
'train_list': None,
'data_dir': '/opt/dataset/NYUD', # mean_rgb
'yita': 0.5
},
'MDBD': {
'img_height': 720,
'img_width': 1280,
'test_list': 'test_pair.lst',
'train_list': 'train_pair.lst',
'data_dir': '/opt/dataset/MDBD', # mean_rgb
'yita': 0.3
},
'BIPED': {
'img_height': 720, #720 # 1088
'img_width': 1280, # 1280 5 1920
'test_list': 'test_pair.lst',
'train_list': 'train_rgb.lst',
'data_dir': '/opt/dataset/BIPED', # mean_rgb
'yita': 0.5
},
'CLASSIC': {
'img_height': 512,
'img_width': 512,
'test_list': None,
'train_list': None,
'data_dir': 'data', # mean_rgb
'yita': 0.5
},
'DCD': {
'img_height': 352, #240
'img_width': 480,# 360
'test_list': 'test_pair.lst',
'train_list': None,
'data_dir': '/opt/dataset/DCD', # mean_rgb
'yita': 0.2
}
}
else:
config = {
'BSDS': {'img_height': 512, # 321
'img_width': 512, # 481
'test_list': 'test_pair.lst',
'train_list': 'train_pair.lst',
'data_dir': 'C:/Users/xavysp/dataset/BSDS', # mean_rgb
'yita': 0.5},
'BSDS300': {'img_height': 512, # 321
'img_width': 512, # 481
'test_list': 'test_pair.lst',
'data_dir': 'C:/Users/xavysp/dataset/BSDS300', # NIR
'yita': 0.5},
'PASCAL': {'img_height': 375,
'img_width': 500,
'test_list': 'test_pair.lst',
'data_dir': 'C:/Users/xavysp/dataset/PASCAL', # mean_rgb
'yita': 0.3},
'CID': {'img_height': 512,
'img_width': 512,
'test_list': 'test_pair.lst',
'data_dir': 'C:/Users/xavysp/dataset/CID', # mean_rgb
'yita': 0.3},
'NYUD': {'img_height': 425,
'img_width': 560,
'test_list': 'test_pair.lst',
'data_dir': 'C:/Users/xavysp/dataset/NYUD', # mean_rgb
'yita': 0.5},
'MDBD': {'img_height': 720,
'img_width': 1280,
'test_list': 'test_pair.lst',
'train_list': 'train_pair.lst',
'data_dir': 'C:/Users/xavysp/dataset/MDBD', # mean_rgb
'yita': 0.3},
'BIPED': {'img_height': 720, # 720
'img_width': 1280, # 1280
'test_list': 'test_pair.lst',
'train_list': 'train_rgb.lst',
'data_dir': 'C:/Users/xavysp/dataset/BIPED', # WIN: '../.../dataset/BIPED/edges'
'yita': 0.5},
'CLASSIC': {'img_height': 512,
'img_width': 512,
'test_list': None,
'train_list': None,
'data_dir': 'data', # mean_rgb
'yita': 0.5},
'DCD': {'img_height': 240,
'img_width': 360,
'test_list': 'test_pair.lst',
'data_dir': 'C:/Users/xavysp/dataset/DCD', # mean_rgb
'yita': 0.2}
}
return config[dataset_name]
class TestDataset(Dataset):
def __init__(self,
data_root,
test_data,
mean_bgr,
img_height,
img_width,
test_list=None,
arg=None
):
if test_data not in DATASET_NAMES:
raise ValueError(f"Unsupported dataset: {test_data}")
self.data_root = data_root
self.test_data = test_data
self.test_list = test_list
self.args=arg
# self.arg = arg
# self.mean_bgr = arg.mean_pixel_values[0:3] if len(arg.mean_pixel_values) == 4 \
# else arg.mean_pixel_values
self.mean_bgr = mean_bgr
self.img_height = img_height
self.img_width = img_width
self.data_index = self._build_index()
print(f"mean_bgr: {self.mean_bgr}")
def _build_index(self):
sample_indices = []
if self.test_data == "CLASSIC":
# for single image testing
images_path = os.listdir(self.data_root)
labels_path = None
sample_indices = [images_path, labels_path]
else:
# image and label paths are located in a list file
if not self.test_list:
raise ValueError(
f"Test list not provided for dataset: {self.test_data}")
list_name = os.path.join(self.data_root, self.test_list)
if self.test_data.upper()=='BIPED':
with open(list_name) as f:
files = json.load(f)
for pair in files:
tmp_img = pair[0]
tmp_gt = pair[1]
sample_indices.append(
(os.path.join(self.data_root, tmp_img),
os.path.join(self.data_root, tmp_gt),))
else:
with open(list_name, 'r') as f:
files = f.readlines()
files = [line.strip() for line in files]
pairs = [line.split() for line in files]
for pair in pairs:
tmp_img = pair[0]
tmp_gt = pair[1]
sample_indices.append(
(os.path.join(self.data_root, tmp_img),
os.path.join(self.data_root, tmp_gt),))
return sample_indices
def __len__(self):
return len(self.data_index[0]) if self.test_data.upper()=='CLASSIC' else len(self.data_index)
def __getitem__(self, idx):
# get data sample
# image_path, label_path = self.data_index[idx]
if self.data_index[1] is None:
image_path = self.data_index[0][idx]
else:
image_path = self.data_index[idx][0]
label_path = None if self.test_data == "CLASSIC" else self.data_index[idx][1]
img_name = os.path.basename(image_path)
file_name = os.path.splitext(img_name)[0] + ".png"
# base dir
if self.test_data.upper() == 'BIPED':
img_dir = os.path.join(self.data_root, 'imgs', 'test')
gt_dir = os.path.join(self.data_root, 'edge_maps', 'test')
elif self.test_data.upper() == 'CLASSIC':
img_dir = self.data_root
gt_dir = None
else:
img_dir = self.data_root
gt_dir = self.data_root
# load data
image = cv2.imread(os.path.join(img_dir, image_path), cv2.IMREAD_COLOR)
if not self.test_data == "CLASSIC":
label = cv2.imread(os.path.join(
gt_dir, label_path), cv2.IMREAD_COLOR)
else:
label = None
im_shape = [image.shape[0], image.shape[1]]
image, label = self.transform(img=image, gt=label)
return dict(images=image, labels=label, file_names=file_name, image_shape=im_shape)
def transform(self, img, gt):
# gt[gt< 51] = 0 # test without gt discrimination
if self.test_data == "CLASSIC":
img_height = self.img_height
img_width = self.img_width
print(
f"actual size: {img.shape}, target size: {( img_height,img_width,)}")
# img = cv2.resize(img, (self.img_width, self.img_height))
img = cv2.resize(img, (img_width,img_height))
gt = None
# Make images and labels at least 512 by 512
elif img.shape[0] < 512 or img.shape[1] < 512:
img = cv2.resize(img, (self.args.test_img_width, self.args.test_img_height)) # 512
gt = cv2.resize(gt, (self.args.test_img_width, self.args.test_img_height)) # 512
# Make sure images and labels are divisible by 2^4=16
elif img.shape[0] % 16 != 0 or img.shape[1] % 16 != 0:
img_width = ((img.shape[1] // 16) + 1) * 16
img_height = ((img.shape[0] // 16) + 1) * 16
img = cv2.resize(img, (img_width, img_height))
gt = cv2.resize(gt, (img_width, img_height))
else:
img_width =self.args.test_img_width
img_height =self.args.test_img_height
img = cv2.resize(img, (img_width, img_height))
gt = cv2.resize(gt, (img_width, img_height))
# if self.yita is not None:
# gt[gt >= self.yita] = 1
img = np.array(img, dtype=np.float32)
# if self.rgb:
# img = img[:, :, ::-1] # RGB->BGR
# img=cv2.resize(img, (400, 464))
img -= self.mean_bgr
img = img.transpose((2, 0, 1))
img = torch.from_numpy(img.copy()).float()
if self.test_data == "CLASSIC":
gt = np.zeros((img.shape[:2]))
gt = torch.from_numpy(np.array([gt])).float()
else:
gt = np.array(gt, dtype=np.float32)
if len(gt.shape) == 3:
gt = gt[:, :, 0]
gt /= 255.
gt = torch.from_numpy(np.array([gt])).float()
return img, gt
class BipedDataset(Dataset):
train_modes = ['train', 'test', ]
dataset_types = ['rgbr', ]
data_types = ['aug', ]
def __init__(self,
data_root,
img_height,
img_width,
mean_bgr,
train_mode='train',
dataset_type='rgbr',
# is_scaling=None,
# Whether to crop image or otherwise resize image to match image height and width.
crop_img=False,
arg=None
):
self.data_root = data_root
self.train_mode = train_mode
self.dataset_type = dataset_type
self.data_type = 'aug' # be aware that this might change in the future
self.img_height = img_height
self.img_width = img_width
self.mean_bgr = mean_bgr
self.crop_img = crop_img
self.arg = arg
self.data_index = self._build_index()
def _build_index(self):
assert self.train_mode in self.train_modes, self.train_mode
assert self.dataset_type in self.dataset_types, self.dataset_type
assert self.data_type in self.data_types, self.data_type
data_root = os.path.abspath(self.data_root)
sample_indices = []
if self.arg.train_data.lower()=='biped':
images_path = os.path.join(data_root,
'edges/imgs',
self.train_mode,
self.dataset_type,
self.data_type)
labels_path = os.path.join(data_root,
'edges/edge_maps',
self.train_mode,
self.dataset_type,
self.data_type)
for directory_name in os.listdir(images_path):
image_directories = os.path.join(images_path, directory_name)
for file_name_ext in os.listdir(image_directories):
file_name = os.path.splitext(file_name_ext)[0]
sample_indices.append(
(os.path.join(images_path, directory_name, file_name + '.jpg'),
os.path.join(labels_path, directory_name, file_name + '.png'),)
)
else:
file_path = os.path.join(data_root, self.arg.train_list)
if self.arg.train_data.lower()=='bsds':
with open(file_path, 'r') as f:
files = f.readlines()
files = [line.strip() for line in files]
pairs = [line.split() for line in files]
for pair in pairs:
tmp_img = pair[0]
tmp_gt = pair[1]
sample_indices.append(
(os.path.join(data_root,tmp_img),
os.path.join(data_root,tmp_gt),))
else:
with open(file_path) as f:
files = json.load(f)
for pair in files:
tmp_img = pair[0]
tmp_gt = pair[1]
sample_indices.append(
(os.path.join(data_root, tmp_img),
os.path.join(data_root, tmp_gt),))
return sample_indices
def __len__(self):
return len(self.data_index)
def __getitem__(self, idx):
# get data sample
image_path, label_path = self.data_index[idx]
# load data
image = cv2.imread(image_path, cv2.IMREAD_COLOR)
label = cv2.imread(label_path, cv2.IMREAD_GRAYSCALE)
image, label = self.transform(img=image, gt=label)
return dict(images=image, labels=label)
def transform(self, img, gt):
gt = np.array(gt, dtype=np.float32)
if len(gt.shape) == 3:
gt = gt[:, :, 0]
gt /= 255. # for DexiNed input and BDCN
img = np.array(img, dtype=np.float32)
img -= self.mean_bgr
i_h, i_w,_ = img.shape
# data = []
# if self.scale is not None:
# for scl in self.scale:
# img_scale = cv2.resize(img, None, fx=scl, fy=scl, interpolation=cv2.INTER_LINEAR)
# data.append(torch.from_numpy(img_scale.transpose((2, 0, 1))).float())
# return data, gt
# 400 for BIPEd and 352 for BSDS check with 384
crop_size = self.img_height if self.img_height == self.img_width else None#448# MDBD=480 BIPED=480/400 BSDS=352
# for BSDS 352/BRIND
if i_w> crop_size and i_h>crop_size:
i = random.randint(0, i_h - crop_size)
j = random.randint(0, i_w - crop_size)
img = img[i:i + crop_size , j:j + crop_size ]
gt = gt[i:i + crop_size , j:j + crop_size ]
# # for BIPED/MDBD
# if np.random.random() > 0.4: #l
# h,w = gt.shape
# if i_w> 500 and i_h>500:
#
# LR_img_size = crop_size #l BIPED=256, 240 200 # MDBD= 352 BSDS= 176
# i = random.randint(0, h - LR_img_size)
# j = random.randint(0, w - LR_img_size)
# # if img.
# img = img[i:i + LR_img_size , j:j + LR_img_size ]
# gt = gt[i:i + LR_img_size , j:j + LR_img_size ]
# else:
# LR_img_size = 352#256 # l BIPED=208-352, # MDBD= 352-480- BSDS= 176-320
# i = random.randint(0, h - LR_img_size)
# j = random.randint(0, w - LR_img_size)
# # if img.
# img = img[i:i + LR_img_size, j:j + LR_img_size]
# gt = gt[i:i + LR_img_size, j:j + LR_img_size]
# img = cv2.resize(img, dsize=(crop_size, crop_size), )
# gt = cv2.resize(gt, dsize=(crop_size, crop_size))
else:
# New addidings
img = cv2.resize(img, dsize=(crop_size, crop_size))
gt = cv2.resize(gt, dsize=(crop_size, crop_size))
# BRIND
gt[gt > 0.1] +=0.2#0.4
gt = np.clip(gt, 0., 1.)
# gt[gt > 0.1] =1#0.4
# gt = np.clip(gt, 0., 1.)
# # for BIPED
# gt[gt > 0.2] += 0.6# 0.5 for BIPED
# gt = np.clip(gt, 0., 1.) # BIPED
# # for MDBD
# gt[gt > 0.1] +=0.7
# gt = np.clip(gt, 0., 1.)
# # For RCF input
# # -----------------------------------
# gt[gt==0]=0.
# gt[np.logical_and(gt>0.,gt<0.5)] = 2.
# gt[gt>=0.5]=1.
#
# gt = gt.astype('float32')
# ----------------------------------
img = img.transpose((2, 0, 1))
img = torch.from_numpy(img.copy()).float()
gt = torch.from_numpy(np.array([gt])).float()
return img, gt
|