Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,14 +3,34 @@ import os
|
|
| 3 |
import tempfile
|
| 4 |
from typing import Tuple, Optional
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import gradio as gr
|
| 7 |
import numpy as np
|
| 8 |
import soundfile as sf
|
| 9 |
import torch
|
| 10 |
import torchaudio
|
| 11 |
-
from fastapi import FastAPI, File, UploadFile, Query
|
| 12 |
from fastapi.responses import StreamingResponse
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# -----------------------------
|
| 16 |
# Model: SpeechBrain MetricGAN+
|
|
@@ -22,7 +42,6 @@ _DEVICE = "cpu"
|
|
| 22 |
def _get_enhancer() -> SpectralMaskEnhancement:
|
| 23 |
global _ENHANCER
|
| 24 |
if _ENHANCER is None:
|
| 25 |
-
# Downloads once and caches in the Space
|
| 26 |
_ENHANCER = SpectralMaskEnhancement.from_hparams(
|
| 27 |
source="speechbrain/metricgan-plus-voicebank",
|
| 28 |
savedir="pretrained/metricgan_plus_voicebank",
|
|
@@ -35,16 +54,13 @@ def _get_enhancer() -> SpectralMaskEnhancement:
|
|
| 35 |
# Audio helpers
|
| 36 |
# -----------------------------
|
| 37 |
def _to_mono(wav: np.ndarray) -> np.ndarray:
|
| 38 |
-
"""Ensure mono shape [T]."""
|
| 39 |
if wav.ndim == 1:
|
| 40 |
return wav.astype(np.float32)
|
| 41 |
-
#
|
| 42 |
if wav.shape[0] < wav.shape[1]:
|
| 43 |
-
# likely [T, C]
|
| 44 |
return wav.mean(axis=1).astype(np.float32)
|
| 45 |
-
|
| 46 |
-
# likely [C, T]
|
| 47 |
-
return wav.mean(axis=0).astype(np.float32)
|
| 48 |
|
| 49 |
|
| 50 |
def _resample_torch(wav: torch.Tensor, sr_in: int, sr_out: int) -> torch.Tensor:
|
|
@@ -56,21 +72,19 @@ def _resample_torch(wav: torch.Tensor, sr_in: int, sr_out: int) -> torch.Tensor:
|
|
| 56 |
def _highpass(wav: torch.Tensor, sr: int, cutoff_hz: float) -> torch.Tensor:
|
| 57 |
if cutoff_hz is None or cutoff_hz <= 0:
|
| 58 |
return wav
|
| 59 |
-
# 2nd-order Butterworth-ish highpass via biquad
|
| 60 |
return torchaudio.functional.highpass_biquad(wav, sr, cutoff_hz)
|
| 61 |
|
| 62 |
|
| 63 |
def _presence_boost(wav: torch.Tensor, sr: int, gain_db: float) -> torch.Tensor:
|
| 64 |
-
"""Simple presence
|
| 65 |
if abs(gain_db) < 1e-6:
|
| 66 |
return wav
|
| 67 |
-
center = 4500.0
|
| 68 |
-
q = 0.707
|
| 69 |
return torchaudio.functional.equalizer_biquad(wav, sr, center, q, gain_db)
|
| 70 |
|
| 71 |
|
| 72 |
def _limit_peak(wav: torch.Tensor, target_dbfs: float = -1.0) -> torch.Tensor:
|
| 73 |
-
"""Peak-normalize to target dBFS (default -1 dB)."""
|
| 74 |
target_amp = 10.0 ** (target_dbfs / 20.0)
|
| 75 |
peak = torch.max(torch.abs(wav)).item()
|
| 76 |
if peak > 0:
|
|
@@ -98,35 +112,33 @@ def _enhance_numpy_audio(
|
|
| 98 |
enh = _get_enhancer()
|
| 99 |
wav_16k = _resample_torch(wav_t, sr_in, 16000)
|
| 100 |
|
| 101 |
-
# Enhance via file path API for
|
| 102 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_in:
|
| 103 |
sf.write(tmp_in.name, wav_16k.squeeze(0).numpy(), 16000, subtype="PCM_16")
|
| 104 |
tmp_in.flush()
|
| 105 |
-
|
| 106 |
-
|
| 107 |
try:
|
| 108 |
os.remove(tmp_in.name)
|
| 109 |
except Exception:
|
| 110 |
pass
|
| 111 |
|
| 112 |
-
# Optional polish: high-pass & presence EQ
|
| 113 |
clean = _highpass(clean, 16000, lowcut_hz)
|
| 114 |
clean = _presence_boost(clean, 16000, presence_db)
|
| 115 |
-
|
| 116 |
-
# Peak limiting to avoid inter-sample clip
|
| 117 |
clean = _limit_peak(clean, target_dbfs=-1.0)
|
| 118 |
|
| 119 |
-
# Resample
|
| 120 |
sr_out = sr_in if (out_sr is None or out_sr <= 0) else int(out_sr)
|
| 121 |
-
clean_out =
|
| 122 |
-
np.float32
|
| 123 |
)
|
| 124 |
|
| 125 |
return sr_out, clean_out
|
| 126 |
|
| 127 |
|
| 128 |
def _wav_bytes(sr: int, mono_f32: np.ndarray) -> bytes:
|
| 129 |
-
"""Encode
|
| 130 |
buf = io.BytesIO()
|
| 131 |
sf.write(buf, mono_f32, sr, subtype="PCM_16", format="WAV")
|
| 132 |
buf.seek(0)
|
|
@@ -136,7 +148,7 @@ def _wav_bytes(sr: int, mono_f32: np.ndarray) -> bytes:
|
|
| 136 |
# -----------------------------
|
| 137 |
# FastAPI app with raw endpoint
|
| 138 |
# -----------------------------
|
| 139 |
-
app = FastAPI(title="Voice Clarity Booster (MetricGAN+)", version="1.0.
|
| 140 |
|
| 141 |
|
| 142 |
@app.post("/enhance")
|
|
@@ -148,7 +160,6 @@ async def enhance_endpoint(
|
|
| 148 |
):
|
| 149 |
"""Raw REST endpoint. Returns enhanced audio as audio/wav bytes."""
|
| 150 |
data = await file.read()
|
| 151 |
-
# Decode with soundfile
|
| 152 |
wav_np, sr_in = sf.read(io.BytesIO(data), always_2d=False, dtype="float32")
|
| 153 |
sr_out, enhanced = _enhance_numpy_audio(
|
| 154 |
(sr_in, wav_np),
|
|
@@ -157,7 +168,9 @@ async def enhance_endpoint(
|
|
| 157 |
out_sr=output_sr if output_sr > 0 else None,
|
| 158 |
)
|
| 159 |
wav_bytes = _wav_bytes(sr_out, enhanced)
|
| 160 |
-
headers = {
|
|
|
|
|
|
|
| 161 |
return StreamingResponse(io.BytesIO(wav_bytes), media_type="audio/wav", headers=headers)
|
| 162 |
|
| 163 |
|
|
@@ -175,7 +188,6 @@ def gradio_enhance(
|
|
| 175 |
out_sr = None
|
| 176 |
if output_sr in {"44100", "48000"}:
|
| 177 |
out_sr = int(output_sr)
|
| 178 |
-
# "Original" -> None
|
| 179 |
sr_out, enhanced = _enhance_numpy_audio(
|
| 180 |
audio, presence_db=float(presence_db), lowcut_hz=float(lowcut_hz), out_sr=out_sr
|
| 181 |
)
|
|
|
|
| 3 |
import tempfile
|
| 4 |
from typing import Tuple, Optional
|
| 5 |
|
| 6 |
+
# ---- tame noisy deprecation warnings (optional but nice) ----
|
| 7 |
+
import warnings
|
| 8 |
+
warnings.filterwarnings(
|
| 9 |
+
"ignore",
|
| 10 |
+
message=".*torchaudio._backend.list_audio_backends has been deprecated.*",
|
| 11 |
+
)
|
| 12 |
+
warnings.filterwarnings(
|
| 13 |
+
"ignore",
|
| 14 |
+
module=r"speechbrain\..*",
|
| 15 |
+
category=UserWarning,
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
import gradio as gr
|
| 19 |
import numpy as np
|
| 20 |
import soundfile as sf
|
| 21 |
import torch
|
| 22 |
import torchaudio
|
| 23 |
+
from fastapi import FastAPI, File, UploadFile, Query
|
| 24 |
from fastapi.responses import StreamingResponse
|
| 25 |
+
|
| 26 |
+
# ---- SpeechBrain import: prefer new API, fall back if older version ----
|
| 27 |
+
try:
|
| 28 |
+
# SpeechBrain >= 1.0
|
| 29 |
+
from speechbrain.inference import SpectralMaskEnhancement
|
| 30 |
+
except Exception: # pragma: no cover
|
| 31 |
+
# Older SpeechBrain (<1.0)
|
| 32 |
+
from speechbrain.pretrained import SpectralMaskEnhancement # type: ignore
|
| 33 |
+
|
| 34 |
|
| 35 |
# -----------------------------
|
| 36 |
# Model: SpeechBrain MetricGAN+
|
|
|
|
| 42 |
def _get_enhancer() -> SpectralMaskEnhancement:
|
| 43 |
global _ENHANCER
|
| 44 |
if _ENHANCER is None:
|
|
|
|
| 45 |
_ENHANCER = SpectralMaskEnhancement.from_hparams(
|
| 46 |
source="speechbrain/metricgan-plus-voicebank",
|
| 47 |
savedir="pretrained/metricgan_plus_voicebank",
|
|
|
|
| 54 |
# Audio helpers
|
| 55 |
# -----------------------------
|
| 56 |
def _to_mono(wav: np.ndarray) -> np.ndarray:
|
| 57 |
+
"""Ensure mono shape [T] float32."""
|
| 58 |
if wav.ndim == 1:
|
| 59 |
return wav.astype(np.float32)
|
| 60 |
+
# [T, C] or [C, T]
|
| 61 |
if wav.shape[0] < wav.shape[1]:
|
|
|
|
| 62 |
return wav.mean(axis=1).astype(np.float32)
|
| 63 |
+
return wav.mean(axis=0).astype(np.float32)
|
|
|
|
|
|
|
| 64 |
|
| 65 |
|
| 66 |
def _resample_torch(wav: torch.Tensor, sr_in: int, sr_out: int) -> torch.Tensor:
|
|
|
|
| 72 |
def _highpass(wav: torch.Tensor, sr: int, cutoff_hz: float) -> torch.Tensor:
|
| 73 |
if cutoff_hz is None or cutoff_hz <= 0:
|
| 74 |
return wav
|
|
|
|
| 75 |
return torchaudio.functional.highpass_biquad(wav, sr, cutoff_hz)
|
| 76 |
|
| 77 |
|
| 78 |
def _presence_boost(wav: torch.Tensor, sr: int, gain_db: float) -> torch.Tensor:
|
| 79 |
+
"""Simple presence EQ around ~4.5 kHz."""
|
| 80 |
if abs(gain_db) < 1e-6:
|
| 81 |
return wav
|
| 82 |
+
center = 4500.0
|
| 83 |
+
q = 0.707
|
| 84 |
return torchaudio.functional.equalizer_biquad(wav, sr, center, q, gain_db)
|
| 85 |
|
| 86 |
|
| 87 |
def _limit_peak(wav: torch.Tensor, target_dbfs: float = -1.0) -> torch.Tensor:
|
|
|
|
| 88 |
target_amp = 10.0 ** (target_dbfs / 20.0)
|
| 89 |
peak = torch.max(torch.abs(wav)).item()
|
| 90 |
if peak > 0:
|
|
|
|
| 112 |
enh = _get_enhancer()
|
| 113 |
wav_16k = _resample_torch(wav_t, sr_in, 16000)
|
| 114 |
|
| 115 |
+
# Enhance via file path API for broad compatibility
|
| 116 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_in:
|
| 117 |
sf.write(tmp_in.name, wav_16k.squeeze(0).numpy(), 16000, subtype="PCM_16")
|
| 118 |
tmp_in.flush()
|
| 119 |
+
clean = enh.enhance_file(tmp_in.name) # torch.Tensor [1, T]
|
| 120 |
+
|
| 121 |
try:
|
| 122 |
os.remove(tmp_in.name)
|
| 123 |
except Exception:
|
| 124 |
pass
|
| 125 |
|
| 126 |
+
# Optional polish: high-pass & presence EQ + peak limit
|
| 127 |
clean = _highpass(clean, 16000, lowcut_hz)
|
| 128 |
clean = _presence_boost(clean, 16000, presence_db)
|
|
|
|
|
|
|
| 129 |
clean = _limit_peak(clean, target_dbfs=-1.0)
|
| 130 |
|
| 131 |
+
# Resample to requested output rate (or original)
|
| 132 |
sr_out = sr_in if (out_sr is None or out_sr <= 0) else int(out_sr)
|
| 133 |
+
clean_out = (
|
| 134 |
+
_resample_torch(clean, 16000, sr_out).squeeze(0).numpy().astype(np.float32)
|
| 135 |
)
|
| 136 |
|
| 137 |
return sr_out, clean_out
|
| 138 |
|
| 139 |
|
| 140 |
def _wav_bytes(sr: int, mono_f32: np.ndarray) -> bytes:
|
| 141 |
+
"""Encode mono float32 array as 16-bit PCM WAV bytes."""
|
| 142 |
buf = io.BytesIO()
|
| 143 |
sf.write(buf, mono_f32, sr, subtype="PCM_16", format="WAV")
|
| 144 |
buf.seek(0)
|
|
|
|
| 148 |
# -----------------------------
|
| 149 |
# FastAPI app with raw endpoint
|
| 150 |
# -----------------------------
|
| 151 |
+
app = FastAPI(title="Voice Clarity Booster (MetricGAN+)", version="1.0.1")
|
| 152 |
|
| 153 |
|
| 154 |
@app.post("/enhance")
|
|
|
|
| 160 |
):
|
| 161 |
"""Raw REST endpoint. Returns enhanced audio as audio/wav bytes."""
|
| 162 |
data = await file.read()
|
|
|
|
| 163 |
wav_np, sr_in = sf.read(io.BytesIO(data), always_2d=False, dtype="float32")
|
| 164 |
sr_out, enhanced = _enhance_numpy_audio(
|
| 165 |
(sr_in, wav_np),
|
|
|
|
| 168 |
out_sr=output_sr if output_sr > 0 else None,
|
| 169 |
)
|
| 170 |
wav_bytes = _wav_bytes(sr_out, enhanced)
|
| 171 |
+
headers = {
|
| 172 |
+
"Content-Disposition": f'attachment; filename="{os.path.splitext(file.filename or "audio")[0]}_enhanced.wav"'
|
| 173 |
+
}
|
| 174 |
return StreamingResponse(io.BytesIO(wav_bytes), media_type="audio/wav", headers=headers)
|
| 175 |
|
| 176 |
|
|
|
|
| 188 |
out_sr = None
|
| 189 |
if output_sr in {"44100", "48000"}:
|
| 190 |
out_sr = int(output_sr)
|
|
|
|
| 191 |
sr_out, enhanced = _enhance_numpy_audio(
|
| 192 |
audio, presence_db=float(presence_db), lowcut_hz=float(lowcut_hz), out_sr=out_sr
|
| 193 |
)
|