Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,8 @@ import gradio as gr
|
|
| 2 |
from transformers import pipeline
|
| 3 |
import soundfile as sf
|
| 4 |
import os
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# --- Model Loading ---
|
| 7 |
try:
|
|
@@ -13,33 +15,72 @@ except Exception as e:
|
|
| 13 |
|
| 14 |
# --- Prediction Function ---
|
| 15 |
def predict_emotion(audio_file):
|
| 16 |
-
if classifier is None:
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
elif isinstance(audio_file, tuple):
|
| 20 |
sample_rate, audio_array = audio_file
|
| 21 |
temp_audio_path = "temp_audio_from_mic.wav"
|
| 22 |
sf.write(temp_audio_path, audio_array, sample_rate)
|
| 23 |
audio_path = temp_audio_path
|
| 24 |
-
else:
|
|
|
|
|
|
|
| 25 |
try:
|
| 26 |
results = classifier(audio_path, top_k=5)
|
| 27 |
return {item['label']: round(item['score'], 3) for item in results}
|
| 28 |
-
except Exception as e:
|
|
|
|
| 29 |
finally:
|
| 30 |
-
if 'temp_audio_path' in locals() and os.path.exists(temp_audio_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
# --- Gradio Interface ---
|
|
|
|
| 33 |
iface = gr.Interface(
|
| 34 |
fn=predict_emotion,
|
| 35 |
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath", label="Upload Audio or Record with Microphone"),
|
| 36 |
outputs=gr.Label(num_top_classes=5, label="Emotion Probabilities"),
|
| 37 |
title="AI Audio Emotion Detector",
|
| 38 |
description="Upload an audio file or record your voice to detect emotions.",
|
| 39 |
-
#
|
| 40 |
-
api_name="predict"
|
| 41 |
)
|
| 42 |
|
| 43 |
-
# Launch the Gradio app
|
| 44 |
if __name__ == "__main__":
|
| 45 |
iface.queue().launch(server_name="0.0.0.0", share=True)
|
|
|
|
| 2 |
from transformers import pipeline
|
| 3 |
import soundfile as sf
|
| 4 |
import os
|
| 5 |
+
import base64
|
| 6 |
+
import tempfile
|
| 7 |
|
| 8 |
# --- Model Loading ---
|
| 9 |
try:
|
|
|
|
| 15 |
|
| 16 |
# --- Prediction Function ---
|
| 17 |
def predict_emotion(audio_file):
|
| 18 |
+
if classifier is None:
|
| 19 |
+
return {"error": "The AI model could not be loaded."}
|
| 20 |
+
|
| 21 |
+
if audio_file is None:
|
| 22 |
+
return {"error": "No audio input provided."}
|
| 23 |
+
|
| 24 |
+
# Handle different input types
|
| 25 |
+
if isinstance(audio_file, str):
|
| 26 |
+
audio_path = audio_file
|
| 27 |
elif isinstance(audio_file, tuple):
|
| 28 |
sample_rate, audio_array = audio_file
|
| 29 |
temp_audio_path = "temp_audio_from_mic.wav"
|
| 30 |
sf.write(temp_audio_path, audio_array, sample_rate)
|
| 31 |
audio_path = temp_audio_path
|
| 32 |
+
else:
|
| 33 |
+
return {"error": f"Invalid audio input format: {type(audio_file)}"}
|
| 34 |
+
|
| 35 |
try:
|
| 36 |
results = classifier(audio_path, top_k=5)
|
| 37 |
return {item['label']: round(item['score'], 3) for item in results}
|
| 38 |
+
except Exception as e:
|
| 39 |
+
return {"error": f"An error occurred during prediction: {str(e)}"}
|
| 40 |
finally:
|
| 41 |
+
if 'temp_audio_path' in locals() and os.path.exists(temp_audio_path):
|
| 42 |
+
os.remove(temp_audio_path)
|
| 43 |
+
|
| 44 |
+
# --- API Function for Base64 Input ---
|
| 45 |
+
def predict_emotion_api(data):
|
| 46 |
+
"""
|
| 47 |
+
API function that accepts base64 encoded audio data
|
| 48 |
+
Expected input format: {"data": "base64_encoded_audio_string"}
|
| 49 |
+
"""
|
| 50 |
+
if classifier is None:
|
| 51 |
+
return {"error": "The AI model could not be loaded."}
|
| 52 |
+
|
| 53 |
+
try:
|
| 54 |
+
# Decode base64 audio data
|
| 55 |
+
audio_data = base64.b64decode(data)
|
| 56 |
+
|
| 57 |
+
# Create temporary file
|
| 58 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as temp_file:
|
| 59 |
+
temp_file.write(audio_data)
|
| 60 |
+
temp_audio_path = temp_file.name
|
| 61 |
+
|
| 62 |
+
# Predict emotion
|
| 63 |
+
results = classifier(temp_audio_path, top_k=5)
|
| 64 |
+
|
| 65 |
+
# Clean up temp file
|
| 66 |
+
os.unlink(temp_audio_path)
|
| 67 |
+
|
| 68 |
+
return {item['label']: round(item['score'], 3) for item in results}
|
| 69 |
+
|
| 70 |
+
except Exception as e:
|
| 71 |
+
return {"error": f"An error occurred during prediction: {str(e)}"}
|
| 72 |
|
| 73 |
# --- Gradio Interface ---
|
| 74 |
+
# Main interface for web UI
|
| 75 |
iface = gr.Interface(
|
| 76 |
fn=predict_emotion,
|
| 77 |
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath", label="Upload Audio or Record with Microphone"),
|
| 78 |
outputs=gr.Label(num_top_classes=5, label="Emotion Probabilities"),
|
| 79 |
title="AI Audio Emotion Detector",
|
| 80 |
description="Upload an audio file or record your voice to detect emotions.",
|
| 81 |
+
api_name="predict" # This creates /api/predict/ endpoint
|
|
|
|
| 82 |
)
|
| 83 |
|
| 84 |
+
# Launch the Gradio app
|
| 85 |
if __name__ == "__main__":
|
| 86 |
iface.queue().launch(server_name="0.0.0.0", share=True)
|