Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import numpy as np
|
| 3 |
+
from transformers import AutoModel
|
| 4 |
+
import plotly.graph_objects as go
|
| 5 |
+
from sklearn.manifold import MDS
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
# Page configuration
|
| 10 |
+
st.set_page_config(
|
| 11 |
+
page_title="Jina Embeddings Explorer",
|
| 12 |
+
page_icon="🔮",
|
| 13 |
+
layout="wide"
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
# Custom CSS
|
| 17 |
+
st.markdown("""
|
| 18 |
+
<style>
|
| 19 |
+
.title-font {
|
| 20 |
+
font-size: 28px !important;
|
| 21 |
+
font-weight: bold;
|
| 22 |
+
color: #2c3e50;
|
| 23 |
+
}
|
| 24 |
+
</style>
|
| 25 |
+
""", unsafe_allow_html=True)
|
| 26 |
+
|
| 27 |
+
@st.cache_resource
|
| 28 |
+
def load_model():
|
| 29 |
+
return AutoModel.from_pretrained("jinaai/jina-embeddings-v3", trust_remote_code=True)
|
| 30 |
+
|
| 31 |
+
model = load_model()
|
| 32 |
+
|
| 33 |
+
def get_embeddings(texts, task="text-matching"):
|
| 34 |
+
"""Get embeddings using Jina v3 model"""
|
| 35 |
+
with torch.no_grad():
|
| 36 |
+
embeddings = model.encode(texts, task=task)
|
| 37 |
+
return embeddings
|
| 38 |
+
|
| 39 |
+
def create_similarity_based_visualization(texts, task="text-matching"):
|
| 40 |
+
"""Create visualization based on similarity distances"""
|
| 41 |
+
n = len(texts)
|
| 42 |
+
|
| 43 |
+
# Get embeddings
|
| 44 |
+
embeddings = get_embeddings(texts, task=task)
|
| 45 |
+
|
| 46 |
+
# Calculate similarity matrix using cosine similarity
|
| 47 |
+
similarity_matrix = np.zeros((n, n))
|
| 48 |
+
for i in range(n):
|
| 49 |
+
for j in range(n):
|
| 50 |
+
similarity_matrix[i][j] = np.dot(embeddings[i], embeddings[j]) / (
|
| 51 |
+
np.linalg.norm(embeddings[i]) * np.linalg.norm(embeddings[j]))
|
| 52 |
+
|
| 53 |
+
# Convert similarities to distances
|
| 54 |
+
distance_matrix = 1 - similarity_matrix
|
| 55 |
+
|
| 56 |
+
# Use MDS for visualization
|
| 57 |
+
mds = MDS(n_components=3, dissimilarity='precomputed', random_state=42)
|
| 58 |
+
coords = mds.fit_transform(distance_matrix)
|
| 59 |
+
|
| 60 |
+
# Create 3D visualization
|
| 61 |
+
fig = go.Figure()
|
| 62 |
+
|
| 63 |
+
# Add points
|
| 64 |
+
fig.add_trace(go.Scatter3d(
|
| 65 |
+
x=coords[:, 0],
|
| 66 |
+
y=coords[:, 1],
|
| 67 |
+
z=coords[:, 2],
|
| 68 |
+
mode='markers+text',
|
| 69 |
+
text=texts,
|
| 70 |
+
textposition='top center',
|
| 71 |
+
marker=dict(
|
| 72 |
+
size=10,
|
| 73 |
+
color=list(range(len(texts))),
|
| 74 |
+
colorscale='Viridis',
|
| 75 |
+
opacity=0.8
|
| 76 |
+
),
|
| 77 |
+
name='Texts'
|
| 78 |
+
))
|
| 79 |
+
|
| 80 |
+
# Add lines between points
|
| 81 |
+
for i in range(n):
|
| 82 |
+
for j in range(i+1, n):
|
| 83 |
+
opacity = max(0.1, min(1.0, similarity_matrix[i,j]))
|
| 84 |
+
fig.add_trace(go.Scatter3d(
|
| 85 |
+
x=[coords[i,0], coords[j,0]],
|
| 86 |
+
y=[coords[i,1], coords[j,1]],
|
| 87 |
+
z=[coords[i,2], coords[j,2]],
|
| 88 |
+
mode='lines',
|
| 89 |
+
line=dict(
|
| 90 |
+
color='gray',
|
| 91 |
+
width=2
|
| 92 |
+
),
|
| 93 |
+
opacity=opacity,
|
| 94 |
+
showlegend=False,
|
| 95 |
+
hoverinfo='skip'
|
| 96 |
+
))
|
| 97 |
+
|
| 98 |
+
fig.update_layout(
|
| 99 |
+
title=f"3D Similarity Visualization (Task: {task})",
|
| 100 |
+
scene=dict(
|
| 101 |
+
xaxis_title="Dimension 1",
|
| 102 |
+
yaxis_title="Dimension 2",
|
| 103 |
+
zaxis_title="Dimension 3",
|
| 104 |
+
camera=dict(
|
| 105 |
+
up=dict(x=0, y=0, z=1),
|
| 106 |
+
center=dict(x=0, y=0, z=0),
|
| 107 |
+
eye=dict(x=1.5, y=1.5, z=1.5)
|
| 108 |
+
)
|
| 109 |
+
),
|
| 110 |
+
height=700
|
| 111 |
+
)
|
| 112 |
+
return fig, similarity_matrix
|
| 113 |
+
|
| 114 |
+
def main():
|
| 115 |
+
st.title("🔮 Jina Embeddings v3 Explorer")
|
| 116 |
+
st.markdown("<p class='title-font'>Explore text similarities using state-of-the-art embeddings</p>",
|
| 117 |
+
unsafe_allow_html=True)
|
| 118 |
+
|
| 119 |
+
with st.expander("ℹ️ About Jina Embeddings v3", expanded=True):
|
| 120 |
+
st.markdown("""
|
| 121 |
+
This tool uses Jina Embeddings v3, a powerful multilingual embedding model that supports:
|
| 122 |
+
- Multiple tasks: text-matching, retrieval, classification, separation
|
| 123 |
+
- Long sequences: up to 8192 tokens
|
| 124 |
+
- 30+ languages
|
| 125 |
+
- State-of-the-art performance
|
| 126 |
+
""")
|
| 127 |
+
|
| 128 |
+
# Task selection
|
| 129 |
+
task = st.selectbox(
|
| 130 |
+
"Select Task",
|
| 131 |
+
["text-matching", "retrieval.query", "retrieval.passage", "separation", "classification"],
|
| 132 |
+
help="Different tasks optimize embeddings for specific use cases"
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Example templates
|
| 136 |
+
examples = {
|
| 137 |
+
"Similar Concepts": [
|
| 138 |
+
"I love programming in Python",
|
| 139 |
+
"Coding with Python is amazing",
|
| 140 |
+
"Software development is fun",
|
| 141 |
+
"I enjoy writing code"
|
| 142 |
+
],
|
| 143 |
+
"Multilingual": [
|
| 144 |
+
"Hello, how are you?",
|
| 145 |
+
"Hola, ¿cómo estás?",
|
| 146 |
+
"Bonjour, comment allez-vous?",
|
| 147 |
+
"你好,你好吗?"
|
| 148 |
+
],
|
| 149 |
+
"Technical Concepts": [
|
| 150 |
+
"Machine learning is a subset of artificial intelligence",
|
| 151 |
+
"AI systems can learn from data",
|
| 152 |
+
"Neural networks process information",
|
| 153 |
+
"Deep learning models require training"
|
| 154 |
+
]
|
| 155 |
+
}
|
| 156 |
+
|
| 157 |
+
col1, col2 = st.columns([3, 1])
|
| 158 |
+
with col1:
|
| 159 |
+
selected_example = st.selectbox("Choose an example set:", list(examples.keys()))
|
| 160 |
+
with col2:
|
| 161 |
+
if st.button("Load Example"):
|
| 162 |
+
st.session_state.texts = examples[selected_example]
|
| 163 |
+
|
| 164 |
+
# Text input
|
| 165 |
+
num_texts = st.slider("Number of texts:", 2, 6, 4)
|
| 166 |
+
texts = []
|
| 167 |
+
|
| 168 |
+
for i in range(num_texts):
|
| 169 |
+
default_text = (examples[selected_example][i]
|
| 170 |
+
if selected_example in examples and i < len(examples[selected_example])
|
| 171 |
+
else f"Example text {i+1}")
|
| 172 |
+
text = st.text_area(
|
| 173 |
+
f"Text {i+1}",
|
| 174 |
+
value=default_text,
|
| 175 |
+
height=100,
|
| 176 |
+
key=f"text_{i}"
|
| 177 |
+
)
|
| 178 |
+
texts.append(text)
|
| 179 |
+
|
| 180 |
+
if st.button("Analyze Texts", type="primary"):
|
| 181 |
+
if all(texts):
|
| 182 |
+
fig, similarity_matrix = create_similarity_based_visualization(texts, task)
|
| 183 |
+
|
| 184 |
+
# Display visualization
|
| 185 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 186 |
+
|
| 187 |
+
# Show similarity matrix
|
| 188 |
+
st.markdown("### Similarity Matrix")
|
| 189 |
+
fig_matrix = go.Figure(data=go.Heatmap(
|
| 190 |
+
z=similarity_matrix,
|
| 191 |
+
x=[f"Text {i+1}" for i in range(len(texts))],
|
| 192 |
+
y=[f"Text {i+1}" for i in range(len(texts))],
|
| 193 |
+
colorscale='Viridis',
|
| 194 |
+
text=np.round(similarity_matrix, 3),
|
| 195 |
+
texttemplate='%{text}',
|
| 196 |
+
textfont={"size": 12},
|
| 197 |
+
))
|
| 198 |
+
|
| 199 |
+
fig_matrix.update_layout(
|
| 200 |
+
title=f"Similarity Matrix (Task: {task})",
|
| 201 |
+
height=400
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
st.plotly_chart(fig_matrix, use_container_width=True)
|
| 205 |
+
|
| 206 |
+
# Interpretation
|
| 207 |
+
st.markdown("### 📊 Similarity Analysis")
|
| 208 |
+
for i in range(len(texts)):
|
| 209 |
+
for j in range(i+1, len(texts)):
|
| 210 |
+
similarity = similarity_matrix[i][j]
|
| 211 |
+
interpretation = (
|
| 212 |
+
"🟢 Very Similar" if similarity > 0.8
|
| 213 |
+
else "🟡 Moderately Similar" if similarity > 0.5
|
| 214 |
+
else "🔴 Different"
|
| 215 |
+
)
|
| 216 |
+
st.write(f"{interpretation} ({similarity:.3f}): Text {i+1} vs Text {j+1}")
|
| 217 |
+
|
| 218 |
+
if __name__ == "__main__":
|
| 219 |
+
main()
|