Spaces:
Build error
Build error
Commit
·
bd9a64a
1
Parent(s):
2cb8678
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import pipeline
|
| 4 |
+
from summarizer import Summarizer
|
| 5 |
+
|
| 6 |
+
pipeline = pipeline(task='text-generation', model="DemocracyStudio/generate_nft_content")
|
| 7 |
+
summarize=Summarizer()
|
| 8 |
+
|
| 9 |
+
def main():
|
| 10 |
+
st.title("Text generation for the marketing content of NFTs")
|
| 11 |
+
st.subheader("Course project 'NLP with transformers' at opencampus.sh, Spring 2022")
|
| 12 |
+
|
| 13 |
+
st.sidebar.image("bayc crown.png", use_column_width=True)
|
| 14 |
+
topics=["NFT", "Blockchain", "Metaverse"]
|
| 15 |
+
choice = st.sidebar.selectbox("Select one topic", topics)
|
| 16 |
+
|
| 17 |
+
if choice == 'NFT':
|
| 18 |
+
keywords=st.text_area("Input 4 keywords here: (optional)")
|
| 19 |
+
length=st.text_area("How long should be your text? (default: 512 words)")
|
| 20 |
+
|
| 21 |
+
if st.button("Generate"):
|
| 22 |
+
prompt = "<|startoftext|>"
|
| 23 |
+
generated = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0)
|
| 24 |
+
generated = generated.to(device)
|
| 25 |
+
sample_outputs = model.generate(
|
| 26 |
+
generated,
|
| 27 |
+
do_sample=True,
|
| 28 |
+
top_k=50,
|
| 29 |
+
max_length = 512,
|
| 30 |
+
top_p=0.95,
|
| 31 |
+
num_return_sequences=1
|
| 32 |
+
)
|
| 33 |
+
for i, sample_output in enumerate(sample_outputs):
|
| 34 |
+
generated_text = tokenizer.decode(sample_output,
|
| 35 |
+
skip_special_tokens=True)
|
| 36 |
+
|
| 37 |
+
st.text("Keywords: {}\n".format(keywords))
|
| 38 |
+
st.text("Length in number of words: {}\n".format(length))
|
| 39 |
+
st.text("This is your tailored blog article {generated_text}")
|
| 40 |
+
summary = summarize(generated_text, num_sentences=1)
|
| 41 |
+
st.text("This is a tweet-sized summary of your article {summary}")
|
| 42 |
+
|
| 43 |
+
else:
|
| 44 |
+
st.write("Topic not available yet")
|
| 45 |
+
|