Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,11 @@
|
|
| 1 |
from fastapi import FastAPI, HTTPException
|
| 2 |
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
from pydantic import BaseModel
|
| 4 |
-
from typing import Optional
|
| 5 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 6 |
-
from transformers import BitsAndBytesConfig
|
| 7 |
from peft import PeftModel
|
| 8 |
import torch
|
| 9 |
import os
|
| 10 |
-
from datetime import datetime
|
| 11 |
-
import re
|
| 12 |
|
| 13 |
# =========================
|
| 14 |
# CONFIG
|
|
@@ -17,6 +14,9 @@ import re
|
|
| 17 |
BASE_MODEL = "mistralai/Mistral-7B-Instruct-v0.3"
|
| 18 |
LORA_MODEL = "Delta0723/techmind-pro-v9"
|
| 19 |
|
|
|
|
|
|
|
|
|
|
| 20 |
# =========================
|
| 21 |
# FastAPI Setup
|
| 22 |
# =========================
|
|
@@ -40,24 +40,25 @@ try:
|
|
| 40 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, use_fast=False)
|
| 41 |
tokenizer.pad_token = tokenizer.eos_token
|
| 42 |
|
| 43 |
-
quant_config = BitsAndBytesConfig(load_in_4bit=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
| 46 |
-
BASE_MODEL,
|
| 47 |
-
device_map="auto",
|
| 48 |
-
trust_remote_code=True,
|
| 49 |
-
offload_folder="offload",
|
| 50 |
-
quantization_config=quant_config
|
| 51 |
-
|
| 52 |
model = PeftModel.from_pretrained(base_model, LORA_MODEL)
|
| 53 |
model.eval()
|
| 54 |
|
|
|
|
|
|
|
| 55 |
except Exception as e:
|
| 56 |
print("❌ Error al cargar el modelo:", e)
|
| 57 |
raise e
|
| 58 |
|
| 59 |
-
print("✅ Modelo listo")
|
| 60 |
-
|
| 61 |
# =========================
|
| 62 |
# Data Models
|
| 63 |
# =========================
|
|
|
|
| 1 |
from fastapi import FastAPI, HTTPException
|
| 2 |
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
from pydantic import BaseModel
|
| 4 |
+
from typing import Optional
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
|
|
|
| 6 |
from peft import PeftModel
|
| 7 |
import torch
|
| 8 |
import os
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# =========================
|
| 11 |
# CONFIG
|
|
|
|
| 14 |
BASE_MODEL = "mistralai/Mistral-7B-Instruct-v0.3"
|
| 15 |
LORA_MODEL = "Delta0723/techmind-pro-v9"
|
| 16 |
|
| 17 |
+
# Crear carpeta para offload si no existe
|
| 18 |
+
os.makedirs("offload", exist_ok=True)
|
| 19 |
+
|
| 20 |
# =========================
|
| 21 |
# FastAPI Setup
|
| 22 |
# =========================
|
|
|
|
| 40 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, use_fast=False)
|
| 41 |
tokenizer.pad_token = tokenizer.eos_token
|
| 42 |
|
| 43 |
+
quant_config = BitsAndBytesConfig(load_in_4bit=True)
|
| 44 |
+
|
| 45 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 46 |
+
BASE_MODEL,
|
| 47 |
+
device_map="auto",
|
| 48 |
+
trust_remote_code=True,
|
| 49 |
+
offload_folder="offload",
|
| 50 |
+
quantization_config=quant_config
|
| 51 |
+
)
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
model = PeftModel.from_pretrained(base_model, LORA_MODEL)
|
| 54 |
model.eval()
|
| 55 |
|
| 56 |
+
print("✅ Modelo listo para usar")
|
| 57 |
+
|
| 58 |
except Exception as e:
|
| 59 |
print("❌ Error al cargar el modelo:", e)
|
| 60 |
raise e
|
| 61 |
|
|
|
|
|
|
|
| 62 |
# =========================
|
| 63 |
# Data Models
|
| 64 |
# =========================
|