Spaces:
Runtime error
Runtime error
File size: 9,101 Bytes
05334b7 5ce85fd 05334b7 5ce85fd 19cb7b0 05334b7 d342366 05334b7 5ce85fd 05334b7 5ce85fd 05334b7 5ce85fd 05334b7 5ce85fd 05334b7 5ce85fd 05334b7 5ce85fd 05334b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
"""
TechMind Pro - API Production Ready
Fine-tuning IA especializada en Redes Cisco
"""
from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import FileResponse, JSONResponse
from pydantic import BaseModel
from typing import Optional, List
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import uvicorn
import os
import json
from datetime import datetime
import re
# ============================================
# CONFIGURACIÓN
# ============================================
BASE_MODEL = "mistralai/Mistral-7B-Instruct-v0.3"
LORA_MODEL = "Delta0723/techmind-pro-v9"
OUTPUT_DIR = "/workspace/TechMind/api_outputs"
os.makedirs(OUTPUT_DIR, exist_ok=True)
# ============================================
# INICIALIZAR APP
# ============================================
app = FastAPI(
title="TechMind Pro API",
description="Asistente IA especializado en Redes Cisco & Packet Tracer",
version="1.0.0",
docs_url="/docs",
redoc_url="/redoc"
)
# CORS para permitir requests desde cualquier origen
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# ============================================
# CARGAR MODELO (Al iniciar)
# ============================================
print("🔥 Iniciando TechMind Pro API...")
print("="*60)
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, use_fast=False)
tokenizer.pad_token = tokenizer.eos_token
print("📦 Cargando Mistral 7B...")
model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
device_map="auto",
trust_remote_code=True
)
print("🔧 Cargando LoRA v9 ULTIMATE...")
model = PeftModel.from_pretrained(model, LORA_MODEL)
model.eval()
print("✅ TechMind Pro listo para producción")
print("="*60)
# ============================================
# MODELOS DE DATOS
# ============================================
class QueryRequest(BaseModel):
question: str
max_tokens: Optional[int] = 500
temperature: Optional[float] = 0.7
include_files: Optional[bool] = False
class QueryResponse(BaseModel):
answer: str
confidence: float
processing_time: float
files: Optional[List[dict]] = None
metadata: dict
# ============================================
# FUNCIONES CORE
# ============================================
def generar_respuesta(question: str, max_tokens: int = 500, temperature: float = 0.7) -> str:
"""
Genera respuesta del modelo TechMind
"""
prompt = f"<s>[INST] {question} [/INST]"
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id
)
respuesta = tokenizer.decode(outputs[0], skip_special_tokens=True)
if "[/INST]" in respuesta:
respuesta = respuesta.split("[/INST]")[1].strip()
return respuesta
def calcular_confianza(respuesta: str, pregunta: str) -> float:
"""
Calcula score de confianza basado en keywords técnicos
"""
keywords_cisco = [
'interface', 'ip address', 'router', 'switch', 'vlan',
'configure', 'enable', 'show', 'no shutdown', 'ospf',
'eigrp', 'bgp', 'acl', 'nat', 'trunk'
]
resp_lower = respuesta.lower()
encontrados = sum(1 for k in keywords_cisco if k in resp_lower)
# Score base por keywords
score = min(encontrados / 5, 1.0) * 0.7
# Bonus si tiene bloques de código
if '```' in respuesta or 'enable\nconfigure' in respuesta:
score += 0.2
# Bonus si menciona verificación
if any(v in resp_lower for v in ['show', 'verify', 'debug']):
score += 0.1
return min(score, 1.0)
def extraer_bloques_codigo(respuesta: str) -> List[dict]:
"""
Extrae bloques de código de la respuesta
"""
bloques = []
# Buscar bloques ```
patron = r'```(?:cisco|bash|text)?\n(.*?)```'
matches = re.findall(patron, respuesta, re.DOTALL)
for i, codigo in enumerate(matches, 1):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"config_{i}_{timestamp}.txt"
filepath = os.path.join(OUTPUT_DIR, filename)
with open(filepath, 'w') as f:
f.write(codigo)
bloques.append({
"filename": filename,
"content": codigo,
"size": len(codigo),
"download_url": f"/download/{filename}"
})
return bloques
# ============================================
# ENDPOINTS
# ============================================
@app.get("/")
def root():
"""
Información de la API
"""
return {
"service": "TechMind Pro API",
"version": "1.0.0",
"model": "Mistral-7B v9 ULTIMATE",
"specialization": "Cisco Networking & Packet Tracer",
"status": "operational",
"docs": "/docs",
"endpoints": {
"ask": "POST /ask",
"health": "GET /health",
"stats": "GET /stats"
}
}
@app.get("/health")
def health_check():
"""
Health check del servicio
"""
return {
"status": "healthy",
"model_loaded": model is not None,
"timestamp": datetime.now().isoformat()
}
@app.post("/ask", response_model=QueryResponse)
async def ask_techmind(request: QueryRequest):
"""
Endpoint principal - Consultar a TechMind
Ejemplo:
```json
{
"question": "¿Cómo configuro OSPF área 0?",
"max_tokens": 500,
"temperature": 0.7,
"include_files": true
}
```
"""
try:
start_time = datetime.now()
# Generar respuesta
answer = generar_respuesta(
request.question,
max_tokens=request.max_tokens,
temperature=request.temperature
)
# Calcular confianza
confidence = calcular_confianza(answer, request.question)
# Extraer archivos si se solicita
files = None
if request.include_files:
files = extraer_bloques_codigo(answer)
# Calcular tiempo
processing_time = (datetime.now() - start_time).total_seconds()
return QueryResponse(
answer=answer,
confidence=confidence,
processing_time=processing_time,
files=files,
metadata={
"model": "Mistral-7B v9 ULTIMATE",
"timestamp": datetime.now().isoformat(),
"tokens_generated": len(answer.split())
}
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/download/{filename}")
async def download_file(filename: str):
"""
Descargar archivos de configuración generados
"""
filepath = os.path.join(OUTPUT_DIR, filename)
if not os.path.exists(filepath):
raise HTTPException(status_code=404, detail="Archivo no encontrado")
return FileResponse(
filepath,
media_type='application/octet-stream',
filename=filename
)
@app.get("/stats")
def get_stats():
"""
Estadísticas del servicio
"""
archivos_generados = len([f for f in os.listdir(OUTPUT_DIR) if f.endswith('.txt')])
return {
"archivos_generados": archivos_generados,
"modelo": "Mistral-7B v9 ULTIMATE",
"dataset": "1,191 ejemplos",
"especialización": "Redes Cisco & Packet Tracer",
"uptime": "N/A"
}
@app.post("/batch")
async def batch_queries(questions: List[str]):
"""
Procesar múltiples preguntas
"""
results = []
for q in questions:
try:
answer = generar_respuesta(q)
confidence = calcular_confianza(answer, q)
results.append({
"question": q,
"answer": answer,
"confidence": confidence
})
except Exception as e:
results.append({
"question": q,
"error": str(e)
})
return {"results": results}
# ============================================
# MAIN
# ============================================
if __name__ == "__main__":
print("\n" + "="*60)
print("🚀 TechMind Pro API - Production Mode")
print("="*60)
print("📍 URL: http://0.0.0.0:8000")
print("📚 Docs: http://0.0.0.0:8000/docs")
print("🔥 Listo para recibir consultas")
print("="*60 + "\n")
uvicorn.run(
app,
host="0.0.0.0",
port=8000,
log_level="info"
)
|