File size: 9,101 Bytes
05334b7
 
 
 
 
 
 
 
 
 
5ce85fd
 
 
05334b7
 
 
 
 
 
 
 
 
5ce85fd
 
19cb7b0
05334b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d342366
05334b7
5ce85fd
05334b7
 
 
 
 
 
 
 
5ce85fd
 
 
05334b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ce85fd
05334b7
5ce85fd
 
05334b7
5ce85fd
 
05334b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ce85fd
05334b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
"""
TechMind Pro - API Production Ready
Fine-tuning IA especializada en Redes Cisco
"""

from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import FileResponse, JSONResponse
from pydantic import BaseModel
from typing import Optional, List
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import uvicorn
import os
import json
from datetime import datetime
import re

# ============================================
# CONFIGURACIÓN
# ============================================

BASE_MODEL = "mistralai/Mistral-7B-Instruct-v0.3"
LORA_MODEL = "Delta0723/techmind-pro-v9"
OUTPUT_DIR = "/workspace/TechMind/api_outputs"

os.makedirs(OUTPUT_DIR, exist_ok=True)

# ============================================
# INICIALIZAR APP
# ============================================

app = FastAPI(
    title="TechMind Pro API",
    description="Asistente IA especializado en Redes Cisco & Packet Tracer",
    version="1.0.0",
    docs_url="/docs",
    redoc_url="/redoc"
)

# CORS para permitir requests desde cualquier origen
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# ============================================
# CARGAR MODELO (Al iniciar)
# ============================================

print("🔥 Iniciando TechMind Pro API...")
print("="*60)

tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, use_fast=False)
tokenizer.pad_token = tokenizer.eos_token

print("📦 Cargando Mistral 7B...")
model = AutoModelForCausalLM.from_pretrained(
    BASE_MODEL,
    device_map="auto",
    trust_remote_code=True
)

print("🔧 Cargando LoRA v9 ULTIMATE...")
model = PeftModel.from_pretrained(model, LORA_MODEL)
model.eval()

print("✅ TechMind Pro listo para producción")
print("="*60)

# ============================================
# MODELOS DE DATOS
# ============================================

class QueryRequest(BaseModel):
    question: str
    max_tokens: Optional[int] = 500
    temperature: Optional[float] = 0.7
    include_files: Optional[bool] = False

class QueryResponse(BaseModel):
    answer: str
    confidence: float
    processing_time: float
    files: Optional[List[dict]] = None
    metadata: dict

# ============================================
# FUNCIONES CORE
# ============================================

def generar_respuesta(question: str, max_tokens: int = 500, temperature: float = 0.7) -> str:
    """
    Genera respuesta del modelo TechMind
    """
    prompt = f"<s>[INST] {question} [/INST]"
    inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048)
    inputs = {k: v.to(model.device) for k, v in inputs.items()}
    
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=max_tokens,
            temperature=temperature,
            top_p=0.9,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id,
            eos_token_id=tokenizer.eos_token_id
        )
    
    respuesta = tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    if "[/INST]" in respuesta:
        respuesta = respuesta.split("[/INST]")[1].strip()
    
    return respuesta

def calcular_confianza(respuesta: str, pregunta: str) -> float:
    """
    Calcula score de confianza basado en keywords técnicos
    """
    keywords_cisco = [
        'interface', 'ip address', 'router', 'switch', 'vlan',
        'configure', 'enable', 'show', 'no shutdown', 'ospf',
        'eigrp', 'bgp', 'acl', 'nat', 'trunk'
    ]
    
    resp_lower = respuesta.lower()
    encontrados = sum(1 for k in keywords_cisco if k in resp_lower)
    
    # Score base por keywords
    score = min(encontrados / 5, 1.0) * 0.7
    
    # Bonus si tiene bloques de código
    if '```' in respuesta or 'enable\nconfigure' in respuesta:
        score += 0.2
    
    # Bonus si menciona verificación
    if any(v in resp_lower for v in ['show', 'verify', 'debug']):
        score += 0.1
    
    return min(score, 1.0)

def extraer_bloques_codigo(respuesta: str) -> List[dict]:
    """
    Extrae bloques de código de la respuesta
    """
    bloques = []
    
    # Buscar bloques ```
    patron = r'```(?:cisco|bash|text)?\n(.*?)```'
    matches = re.findall(patron, respuesta, re.DOTALL)
    
    for i, codigo in enumerate(matches, 1):
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        filename = f"config_{i}_{timestamp}.txt"
        filepath = os.path.join(OUTPUT_DIR, filename)
        
        with open(filepath, 'w') as f:
            f.write(codigo)
        
        bloques.append({
            "filename": filename,
            "content": codigo,
            "size": len(codigo),
            "download_url": f"/download/{filename}"
        })
    
    return bloques

# ============================================
# ENDPOINTS
# ============================================

@app.get("/")
def root():
    """
    Información de la API
    """
    return {
        "service": "TechMind Pro API",
        "version": "1.0.0",
        "model": "Mistral-7B v9 ULTIMATE",
        "specialization": "Cisco Networking & Packet Tracer",
        "status": "operational",
        "docs": "/docs",
        "endpoints": {
            "ask": "POST /ask",
            "health": "GET /health",
            "stats": "GET /stats"
        }
    }

@app.get("/health")
def health_check():
    """
    Health check del servicio
    """
    return {
        "status": "healthy",
        "model_loaded": model is not None,
        "timestamp": datetime.now().isoformat()
    }

@app.post("/ask", response_model=QueryResponse)
async def ask_techmind(request: QueryRequest):
    """
    Endpoint principal - Consultar a TechMind
    
    Ejemplo:
    ```json
    {
        "question": "¿Cómo configuro OSPF área 0?",
        "max_tokens": 500,
        "temperature": 0.7,
        "include_files": true
    }
    ```
    """
    try:
        start_time = datetime.now()
        
        # Generar respuesta
        answer = generar_respuesta(
            request.question,
            max_tokens=request.max_tokens,
            temperature=request.temperature
        )
        
        # Calcular confianza
        confidence = calcular_confianza(answer, request.question)
        
        # Extraer archivos si se solicita
        files = None
        if request.include_files:
            files = extraer_bloques_codigo(answer)
        
        # Calcular tiempo
        processing_time = (datetime.now() - start_time).total_seconds()
        
        return QueryResponse(
            answer=answer,
            confidence=confidence,
            processing_time=processing_time,
            files=files,
            metadata={
                "model": "Mistral-7B v9 ULTIMATE",
                "timestamp": datetime.now().isoformat(),
                "tokens_generated": len(answer.split())
            }
        )
        
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/download/{filename}")
async def download_file(filename: str):
    """
    Descargar archivos de configuración generados
    """
    filepath = os.path.join(OUTPUT_DIR, filename)
    
    if not os.path.exists(filepath):
        raise HTTPException(status_code=404, detail="Archivo no encontrado")
    
    return FileResponse(
        filepath,
        media_type='application/octet-stream',
        filename=filename
    )

@app.get("/stats")
def get_stats():
    """
    Estadísticas del servicio
    """
    archivos_generados = len([f for f in os.listdir(OUTPUT_DIR) if f.endswith('.txt')])
    
    return {
        "archivos_generados": archivos_generados,
        "modelo": "Mistral-7B v9 ULTIMATE",
        "dataset": "1,191 ejemplos",
        "especialización": "Redes Cisco & Packet Tracer",
        "uptime": "N/A"
    }

@app.post("/batch")
async def batch_queries(questions: List[str]):
    """
    Procesar múltiples preguntas
    """
    results = []
    
    for q in questions:
        try:
            answer = generar_respuesta(q)
            confidence = calcular_confianza(answer, q)
            results.append({
                "question": q,
                "answer": answer,
                "confidence": confidence
            })
        except Exception as e:
            results.append({
                "question": q,
                "error": str(e)
            })
    
    return {"results": results}

# ============================================
# MAIN
# ============================================

if __name__ == "__main__":
    print("\n" + "="*60)
    print("🚀 TechMind Pro API - Production Mode")
    print("="*60)
    print("📍 URL: http://0.0.0.0:8000")
    print("📚 Docs: http://0.0.0.0:8000/docs")
    print("🔥 Listo para recibir consultas")
    print("="*60 + "\n")
    
    uvicorn.run(
        app,
        host="0.0.0.0",
        port=8000,
        log_level="info"
    )