|
|
import torch |
|
|
from torch import nn |
|
|
import folder_paths |
|
|
import comfy.utils |
|
|
import comfy.ops |
|
|
import comfy.model_management |
|
|
import comfy.ldm.common_dit |
|
|
import comfy.latent_formats |
|
|
|
|
|
|
|
|
class BlockWiseControlBlock(torch.nn.Module): |
|
|
|
|
|
def __init__(self, dim: int = 3072, device=None, dtype=None, operations=None): |
|
|
super().__init__() |
|
|
self.x_rms = operations.RMSNorm(dim, eps=1e-6) |
|
|
self.y_rms = operations.RMSNorm(dim, eps=1e-6) |
|
|
self.input_proj = operations.Linear(dim, dim) |
|
|
self.act = torch.nn.GELU() |
|
|
self.output_proj = operations.Linear(dim, dim) |
|
|
|
|
|
def forward(self, x, y): |
|
|
x, y = self.x_rms(x), self.y_rms(y) |
|
|
x = self.input_proj(x + y) |
|
|
x = self.act(x) |
|
|
x = self.output_proj(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class QwenImageBlockWiseControlNet(torch.nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
num_layers: int = 60, |
|
|
in_dim: int = 64, |
|
|
additional_in_dim: int = 0, |
|
|
dim: int = 3072, |
|
|
device=None, dtype=None, operations=None |
|
|
): |
|
|
super().__init__() |
|
|
self.additional_in_dim = additional_in_dim |
|
|
self.img_in = operations.Linear(in_dim + additional_in_dim, dim, device=device, dtype=dtype) |
|
|
self.controlnet_blocks = torch.nn.ModuleList( |
|
|
[ |
|
|
BlockWiseControlBlock(dim, device=device, dtype=dtype, operations=operations) |
|
|
for _ in range(num_layers) |
|
|
] |
|
|
) |
|
|
|
|
|
def process_input_latent_image(self, latent_image): |
|
|
latent_image[:, :16] = comfy.latent_formats.Wan21().process_in(latent_image[:, :16]) |
|
|
patch_size = 2 |
|
|
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(latent_image, (1, patch_size, patch_size)) |
|
|
orig_shape = hidden_states.shape |
|
|
hidden_states = hidden_states.view(orig_shape[0], orig_shape[1], orig_shape[-2] // 2, 2, orig_shape[-1] // 2, 2) |
|
|
hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5) |
|
|
hidden_states = hidden_states.reshape(orig_shape[0], (orig_shape[-2] // 2) * (orig_shape[-1] // 2), orig_shape[1] * 4) |
|
|
return self.img_in(hidden_states) |
|
|
|
|
|
def control_block(self, img, controlnet_conditioning, block_id): |
|
|
return self.controlnet_blocks[block_id](img, controlnet_conditioning) |
|
|
|
|
|
|
|
|
class SigLIPMultiFeatProjModel(torch.nn.Module): |
|
|
""" |
|
|
SigLIP Multi-Feature Projection Model for processing style features from different layers |
|
|
and projecting them into a unified hidden space. |
|
|
|
|
|
Args: |
|
|
siglip_token_nums (int): Number of SigLIP tokens, default 257 |
|
|
style_token_nums (int): Number of style tokens, default 256 |
|
|
siglip_token_dims (int): Dimension of SigLIP tokens, default 1536 |
|
|
hidden_size (int): Hidden layer size, default 3072 |
|
|
context_layer_norm (bool): Whether to use context layer normalization, default False |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
siglip_token_nums: int = 729, |
|
|
style_token_nums: int = 64, |
|
|
siglip_token_dims: int = 1152, |
|
|
hidden_size: int = 3072, |
|
|
context_layer_norm: bool = True, |
|
|
device=None, dtype=None, operations=None |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
|
|
|
self.high_embedding_linear = nn.Sequential( |
|
|
operations.Linear(siglip_token_nums, style_token_nums), |
|
|
nn.SiLU() |
|
|
) |
|
|
self.high_layer_norm = ( |
|
|
operations.LayerNorm(siglip_token_dims) if context_layer_norm else nn.Identity() |
|
|
) |
|
|
self.high_projection = operations.Linear(siglip_token_dims, hidden_size, bias=True) |
|
|
|
|
|
|
|
|
self.mid_embedding_linear = nn.Sequential( |
|
|
operations.Linear(siglip_token_nums, style_token_nums), |
|
|
nn.SiLU() |
|
|
) |
|
|
self.mid_layer_norm = ( |
|
|
operations.LayerNorm(siglip_token_dims) if context_layer_norm else nn.Identity() |
|
|
) |
|
|
self.mid_projection = operations.Linear(siglip_token_dims, hidden_size, bias=True) |
|
|
|
|
|
|
|
|
self.low_embedding_linear = nn.Sequential( |
|
|
operations.Linear(siglip_token_nums, style_token_nums), |
|
|
nn.SiLU() |
|
|
) |
|
|
self.low_layer_norm = ( |
|
|
operations.LayerNorm(siglip_token_dims) if context_layer_norm else nn.Identity() |
|
|
) |
|
|
self.low_projection = operations.Linear(siglip_token_dims, hidden_size, bias=True) |
|
|
|
|
|
def forward(self, siglip_outputs): |
|
|
""" |
|
|
Forward pass function |
|
|
|
|
|
Args: |
|
|
siglip_outputs: Output from SigLIP model, containing hidden_states |
|
|
|
|
|
Returns: |
|
|
torch.Tensor: Concatenated multi-layer features with shape [bs, 3*style_token_nums, hidden_size] |
|
|
""" |
|
|
dtype = next(self.high_embedding_linear.parameters()).dtype |
|
|
|
|
|
|
|
|
high_embedding = self._process_layer_features( |
|
|
siglip_outputs[2], |
|
|
self.high_embedding_linear, |
|
|
self.high_layer_norm, |
|
|
self.high_projection, |
|
|
dtype |
|
|
) |
|
|
|
|
|
|
|
|
mid_embedding = self._process_layer_features( |
|
|
siglip_outputs[1], |
|
|
self.mid_embedding_linear, |
|
|
self.mid_layer_norm, |
|
|
self.mid_projection, |
|
|
dtype |
|
|
) |
|
|
|
|
|
|
|
|
low_embedding = self._process_layer_features( |
|
|
siglip_outputs[0], |
|
|
self.low_embedding_linear, |
|
|
self.low_layer_norm, |
|
|
self.low_projection, |
|
|
dtype |
|
|
) |
|
|
|
|
|
|
|
|
return torch.cat((high_embedding, mid_embedding, low_embedding), dim=1) |
|
|
|
|
|
def _process_layer_features( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
embedding_linear: nn.Module, |
|
|
layer_norm: nn.Module, |
|
|
projection: nn.Module, |
|
|
dtype: torch.dtype |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Helper function to process features from a single layer |
|
|
|
|
|
Args: |
|
|
hidden_states: Input hidden states [bs, seq_len, dim] |
|
|
embedding_linear: Embedding linear layer |
|
|
layer_norm: Layer normalization |
|
|
projection: Projection layer |
|
|
dtype: Target data type |
|
|
|
|
|
Returns: |
|
|
torch.Tensor: Processed features [bs, style_token_nums, hidden_size] |
|
|
""" |
|
|
|
|
|
embedding = embedding_linear( |
|
|
hidden_states.to(dtype).transpose(1, 2) |
|
|
).transpose(1, 2) |
|
|
|
|
|
|
|
|
embedding = layer_norm(embedding) |
|
|
|
|
|
|
|
|
embedding = projection(embedding) |
|
|
|
|
|
return embedding |
|
|
|
|
|
class ModelPatchLoader: |
|
|
@classmethod |
|
|
def INPUT_TYPES(s): |
|
|
return {"required": { "name": (folder_paths.get_filename_list("model_patches"), ), |
|
|
}} |
|
|
RETURN_TYPES = ("MODEL_PATCH",) |
|
|
FUNCTION = "load_model_patch" |
|
|
EXPERIMENTAL = True |
|
|
|
|
|
CATEGORY = "advanced/loaders" |
|
|
|
|
|
def load_model_patch(self, name): |
|
|
model_patch_path = folder_paths.get_full_path_or_raise("model_patches", name) |
|
|
sd = comfy.utils.load_torch_file(model_patch_path, safe_load=True) |
|
|
dtype = comfy.utils.weight_dtype(sd) |
|
|
|
|
|
if 'controlnet_blocks.0.y_rms.weight' in sd: |
|
|
additional_in_dim = sd["img_in.weight"].shape[1] - 64 |
|
|
model = QwenImageBlockWiseControlNet(additional_in_dim=additional_in_dim, device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast) |
|
|
elif 'feature_embedder.mid_layer_norm.bias' in sd: |
|
|
sd = comfy.utils.state_dict_prefix_replace(sd, {"feature_embedder.": ""}, filter_keys=True) |
|
|
model = SigLIPMultiFeatProjModel(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast) |
|
|
|
|
|
model.load_state_dict(sd) |
|
|
model = comfy.model_patcher.ModelPatcher(model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device()) |
|
|
return (model,) |
|
|
|
|
|
|
|
|
class DiffSynthCnetPatch: |
|
|
def __init__(self, model_patch, vae, image, strength, mask=None): |
|
|
self.model_patch = model_patch |
|
|
self.vae = vae |
|
|
self.image = image |
|
|
self.strength = strength |
|
|
self.mask = mask |
|
|
self.encoded_image = model_patch.model.process_input_latent_image(self.encode_latent_cond(image)) |
|
|
self.encoded_image_size = (image.shape[1], image.shape[2]) |
|
|
|
|
|
def encode_latent_cond(self, image): |
|
|
latent_image = self.vae.encode(image) |
|
|
if self.model_patch.model.additional_in_dim > 0: |
|
|
if self.mask is None: |
|
|
mask_ = torch.ones_like(latent_image)[:, :self.model_patch.model.additional_in_dim // 4] |
|
|
else: |
|
|
mask_ = comfy.utils.common_upscale(self.mask.mean(dim=1, keepdim=True), latent_image.shape[-1], latent_image.shape[-2], "bilinear", "none") |
|
|
|
|
|
return torch.cat([latent_image, mask_], dim=1) |
|
|
else: |
|
|
return latent_image |
|
|
|
|
|
def __call__(self, kwargs): |
|
|
x = kwargs.get("x") |
|
|
img = kwargs.get("img") |
|
|
block_index = kwargs.get("block_index") |
|
|
spacial_compression = self.vae.spacial_compression_encode() |
|
|
if self.encoded_image is None or self.encoded_image_size != (x.shape[-2] * spacial_compression, x.shape[-1] * spacial_compression): |
|
|
image_scaled = comfy.utils.common_upscale(self.image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center") |
|
|
loaded_models = comfy.model_management.loaded_models(only_currently_used=True) |
|
|
self.encoded_image = self.model_patch.model.process_input_latent_image(self.encode_latent_cond(image_scaled.movedim(1, -1))) |
|
|
self.encoded_image_size = (image_scaled.shape[-2], image_scaled.shape[-1]) |
|
|
comfy.model_management.load_models_gpu(loaded_models) |
|
|
|
|
|
img[:, :self.encoded_image.shape[1]] += (self.model_patch.model.control_block(img[:, :self.encoded_image.shape[1]], self.encoded_image.to(img.dtype), block_index) * self.strength) |
|
|
kwargs['img'] = img |
|
|
return kwargs |
|
|
|
|
|
def to(self, device_or_dtype): |
|
|
if isinstance(device_or_dtype, torch.device): |
|
|
self.encoded_image = self.encoded_image.to(device_or_dtype) |
|
|
return self |
|
|
|
|
|
def models(self): |
|
|
return [self.model_patch] |
|
|
|
|
|
class QwenImageDiffsynthControlnet: |
|
|
@classmethod |
|
|
def INPUT_TYPES(s): |
|
|
return {"required": { "model": ("MODEL",), |
|
|
"model_patch": ("MODEL_PATCH",), |
|
|
"vae": ("VAE",), |
|
|
"image": ("IMAGE",), |
|
|
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), |
|
|
}, |
|
|
"optional": {"mask": ("MASK",)}} |
|
|
RETURN_TYPES = ("MODEL",) |
|
|
FUNCTION = "diffsynth_controlnet" |
|
|
EXPERIMENTAL = True |
|
|
|
|
|
CATEGORY = "advanced/loaders/qwen" |
|
|
|
|
|
def diffsynth_controlnet(self, model, model_patch, vae, image, strength, mask=None): |
|
|
model_patched = model.clone() |
|
|
image = image[:, :, :, :3] |
|
|
if mask is not None: |
|
|
if mask.ndim == 3: |
|
|
mask = mask.unsqueeze(1) |
|
|
if mask.ndim == 4: |
|
|
mask = mask.unsqueeze(2) |
|
|
mask = 1.0 - mask |
|
|
|
|
|
model_patched.set_model_double_block_patch(DiffSynthCnetPatch(model_patch, vae, image, strength, mask)) |
|
|
return (model_patched,) |
|
|
|
|
|
|
|
|
class UsoStyleProjectorPatch: |
|
|
def __init__(self, model_patch, encoded_image): |
|
|
self.model_patch = model_patch |
|
|
self.encoded_image = encoded_image |
|
|
|
|
|
def __call__(self, kwargs): |
|
|
txt_ids = kwargs.get("txt_ids") |
|
|
txt = kwargs.get("txt") |
|
|
siglip_embedding = self.model_patch.model(self.encoded_image.to(txt.dtype)).to(txt.dtype) |
|
|
txt = torch.cat([siglip_embedding, txt], dim=1) |
|
|
kwargs['txt'] = txt |
|
|
kwargs['txt_ids'] = torch.cat([torch.zeros(siglip_embedding.shape[0], siglip_embedding.shape[1], 3, dtype=txt_ids.dtype, device=txt_ids.device), txt_ids], dim=1) |
|
|
return kwargs |
|
|
|
|
|
def to(self, device_or_dtype): |
|
|
if isinstance(device_or_dtype, torch.device): |
|
|
self.encoded_image = self.encoded_image.to(device_or_dtype) |
|
|
return self |
|
|
|
|
|
def models(self): |
|
|
return [self.model_patch] |
|
|
|
|
|
|
|
|
class USOStyleReference: |
|
|
@classmethod |
|
|
def INPUT_TYPES(s): |
|
|
return {"required": {"model": ("MODEL",), |
|
|
"model_patch": ("MODEL_PATCH",), |
|
|
"clip_vision_output": ("CLIP_VISION_OUTPUT", ), |
|
|
}} |
|
|
RETURN_TYPES = ("MODEL",) |
|
|
FUNCTION = "apply_patch" |
|
|
EXPERIMENTAL = True |
|
|
|
|
|
CATEGORY = "advanced/model_patches/flux" |
|
|
|
|
|
def apply_patch(self, model, model_patch, clip_vision_output): |
|
|
encoded_image = torch.stack((clip_vision_output.all_hidden_states[:, -20], clip_vision_output.all_hidden_states[:, -11], clip_vision_output.penultimate_hidden_states)) |
|
|
model_patched = model.clone() |
|
|
model_patched.set_model_post_input_patch(UsoStyleProjectorPatch(model_patch, encoded_image)) |
|
|
return (model_patched,) |
|
|
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = { |
|
|
"ModelPatchLoader": ModelPatchLoader, |
|
|
"QwenImageDiffsynthControlnet": QwenImageDiffsynthControlnet, |
|
|
"USOStyleReference": USOStyleReference, |
|
|
} |
|
|
|