Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,95 +2,82 @@ import os
|
|
| 2 |
import streamlit as st
|
| 3 |
import pickle
|
| 4 |
import time
|
|
|
|
|
|
|
| 5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 6 |
-
from langchain import OpenAI
|
| 7 |
from langchain.chains import RetrievalQAWithSourcesChain
|
| 8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 9 |
-
from langchain.document_loaders import UnstructuredURLLoader
|
| 10 |
-
from langchain_groq import ChatGroq
|
| 11 |
-
from langchain.embeddings import OpenAIEmbeddings
|
| 12 |
-
from langchain.vectorstores import FAISS
|
| 13 |
from langchain.vectorstores import Chroma
|
| 14 |
-
import
|
| 15 |
-
from bs4 import BeautifulSoup
|
| 16 |
-
|
| 17 |
-
|
| 18 |
from dotenv import load_dotenv
|
| 19 |
-
|
|
|
|
| 20 |
|
| 21 |
st.title("RockyBot: News Research Tool π")
|
| 22 |
st.sidebar.title("News Article URLs")
|
| 23 |
|
| 24 |
-
|
| 25 |
-
for i in range(3)
|
| 26 |
-
url = st.sidebar.text_input(f"URL {i+1}")
|
| 27 |
-
urls.append(url)
|
| 28 |
-
|
| 29 |
process_url_clicked = st.sidebar.button("Process URLs")
|
| 30 |
file_path = "faiss_store_openai.pkl"
|
| 31 |
|
| 32 |
main_placeholder = st.empty()
|
| 33 |
llm = ChatGroq(model_name="llama-3.3-70b-versatile", temperature=0.9, max_tokens=500)
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
#main_placeholder.text("Data Loading...Started...β
β
β
")
|
| 39 |
-
#data = loader.load()
|
| 40 |
-
def fetch_web_content(url):
|
| 41 |
-
try:
|
| 42 |
response = requests.get(url, timeout=10)
|
| 43 |
response.raise_for_status()
|
| 44 |
soup = BeautifulSoup(response.text, "html.parser")
|
| 45 |
return soup.get_text()
|
| 46 |
-
|
| 47 |
return f"Error fetching {url}: {str(e)}"
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
#
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
main_placeholder.text("Data Loading...Completed...β
β
β
")
|
| 60 |
-
# split data
|
| 61 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
| 62 |
separators=['\n\n', '\n', '.', ','],
|
| 63 |
chunk_size=1000
|
| 64 |
-
|
| 65 |
-
main_placeholder.text("Text
|
| 66 |
docs = text_splitter.split_documents(data)
|
| 67 |
-
|
|
|
|
| 68 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 69 |
-
#vectorstore_huggingface = FAISS.from_documents(docs, embedding_model)
|
| 70 |
vectorstore_huggingface = Chroma.from_documents(docs, embedding_model)
|
| 71 |
main_placeholder.text("Embedding Vector Started Building...β
β
β
")
|
| 72 |
time.sleep(2)
|
| 73 |
-
|
| 74 |
-
# Save the
|
| 75 |
with open(file_path, "wb") as f:
|
| 76 |
pickle.dump(vectorstore_huggingface, f)
|
| 77 |
|
| 78 |
-
|
|
|
|
| 79 |
if query:
|
| 80 |
if os.path.exists(file_path):
|
| 81 |
with open(file_path, "rb") as f:
|
| 82 |
vectorstore = pickle.load(f)
|
| 83 |
chain = RetrievalQAWithSourcesChain.from_llm(llm=llm, retriever=vectorstore.as_retriever())
|
| 84 |
result = chain({"question": query}, return_only_outputs=True)
|
| 85 |
-
|
|
|
|
| 86 |
st.header("Answer")
|
| 87 |
st.write(result["answer"])
|
| 88 |
-
|
| 89 |
# Display sources, if available
|
| 90 |
sources = result.get("sources", "")
|
| 91 |
if sources:
|
| 92 |
st.subheader("Sources:")
|
| 93 |
-
sources_list = sources.split("\n")
|
| 94 |
for source in sources_list:
|
| 95 |
st.write(source)
|
| 96 |
|
|
|
|
| 2 |
import streamlit as st
|
| 3 |
import pickle
|
| 4 |
import time
|
| 5 |
+
import requests
|
| 6 |
+
from bs4 import BeautifulSoup
|
| 7 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
|
| 8 |
from langchain.chains import RetrievalQAWithSourcesChain
|
| 9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
from langchain.vectorstores import Chroma
|
| 11 |
+
from langchain_groq import ChatGroq
|
|
|
|
|
|
|
|
|
|
| 12 |
from dotenv import load_dotenv
|
| 13 |
+
|
| 14 |
+
load_dotenv() # Load environment variables from .env file
|
| 15 |
|
| 16 |
st.title("RockyBot: News Research Tool π")
|
| 17 |
st.sidebar.title("News Article URLs")
|
| 18 |
|
| 19 |
+
# Collect URLs from user input
|
| 20 |
+
urls = [st.sidebar.text_input(f"URL {i+1}") for i in range(3)]
|
|
|
|
|
|
|
|
|
|
| 21 |
process_url_clicked = st.sidebar.button("Process URLs")
|
| 22 |
file_path = "faiss_store_openai.pkl"
|
| 23 |
|
| 24 |
main_placeholder = st.empty()
|
| 25 |
llm = ChatGroq(model_name="llama-3.3-70b-versatile", temperature=0.9, max_tokens=500)
|
| 26 |
|
| 27 |
+
def fetch_web_content(url):
|
| 28 |
+
"""Fetches text content from a given URL using BeautifulSoup."""
|
| 29 |
+
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
response = requests.get(url, timeout=10)
|
| 31 |
response.raise_for_status()
|
| 32 |
soup = BeautifulSoup(response.text, "html.parser")
|
| 33 |
return soup.get_text()
|
| 34 |
+
except Exception as e:
|
| 35 |
return f"Error fetching {url}: {str(e)}"
|
| 36 |
|
| 37 |
+
if process_url_clicked:
|
| 38 |
+
main_placeholder.text("Data Loading...Started...β
β
β
")
|
| 39 |
+
|
| 40 |
+
# Fetch content from URLs
|
| 41 |
+
data = [fetch_web_content(url) for url in urls if url.strip()]
|
| 42 |
+
|
| 43 |
+
main_placeholder.text("Data Loading...Completed...β
β
β
")
|
| 44 |
+
|
| 45 |
+
# Split data into chunks
|
| 46 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
|
|
|
|
|
|
|
|
|
| 47 |
separators=['\n\n', '\n', '.', ','],
|
| 48 |
chunk_size=1000
|
| 49 |
+
)
|
| 50 |
+
main_placeholder.text("Text Splitting...Started...β
β
β
")
|
| 51 |
docs = text_splitter.split_documents(data)
|
| 52 |
+
|
| 53 |
+
# Create embeddings and save to Chroma vector store
|
| 54 |
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
|
|
|
| 55 |
vectorstore_huggingface = Chroma.from_documents(docs, embedding_model)
|
| 56 |
main_placeholder.text("Embedding Vector Started Building...β
β
β
")
|
| 57 |
time.sleep(2)
|
| 58 |
+
|
| 59 |
+
# Save the vector store to a pickle file
|
| 60 |
with open(file_path, "wb") as f:
|
| 61 |
pickle.dump(vectorstore_huggingface, f)
|
| 62 |
|
| 63 |
+
# User query input
|
| 64 |
+
query = st.text_input("Question: ")
|
| 65 |
if query:
|
| 66 |
if os.path.exists(file_path):
|
| 67 |
with open(file_path, "rb") as f:
|
| 68 |
vectorstore = pickle.load(f)
|
| 69 |
chain = RetrievalQAWithSourcesChain.from_llm(llm=llm, retriever=vectorstore.as_retriever())
|
| 70 |
result = chain({"question": query}, return_only_outputs=True)
|
| 71 |
+
|
| 72 |
+
# Display answer
|
| 73 |
st.header("Answer")
|
| 74 |
st.write(result["answer"])
|
| 75 |
+
|
| 76 |
# Display sources, if available
|
| 77 |
sources = result.get("sources", "")
|
| 78 |
if sources:
|
| 79 |
st.subheader("Sources:")
|
| 80 |
+
sources_list = sources.split("\n")
|
| 81 |
for source in sources_list:
|
| 82 |
st.write(source)
|
| 83 |
|