Spaces:
Runtime error
Runtime error
| // | |
| // helpers | |
| // | |
| LLAMA_ATTRIBUTE_FORMAT(1, 2) | |
| static std::string format(const char * fmt, ...) { | |
| va_list ap; | |
| va_list ap2; | |
| va_start(ap, fmt); | |
| va_copy(ap2, ap); | |
| int size = vsnprintf(NULL, 0, fmt, ap); | |
| GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT | |
| std::vector<char> buf(size + 1); | |
| int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); | |
| GGML_ASSERT(size2 == size); | |
| va_end(ap2); | |
| va_end(ap); | |
| return std::string(buf.data(), size); | |
| } | |
| struct naive_trie { | |
| naive_trie() : has_value(false), value(0) { | |
| } | |
| void insert(const char * key, size_t len, int32_t value = 0) { | |
| if (len == 0) { | |
| this->has_value = true; | |
| this->value = value; | |
| return; | |
| } | |
| char c = key[0]; | |
| auto res = children.find(c); | |
| if (res != children.end()) { | |
| res->second.insert(key + 1, len - 1, value); | |
| } else { | |
| auto res = children.insert(std::make_pair(c, naive_trie())); | |
| res.first->second.insert(key + 1, len - 1, value); | |
| } | |
| } | |
| std::pair<const char *, size_t> get_longest_prefix(const char * key, size_t len, size_t offset = 0) const { | |
| if (len == 0 || offset == len) { | |
| return std::make_pair(key, offset); | |
| } | |
| char c = key[offset]; | |
| auto res = children.find(c); | |
| if (res != children.end()) { | |
| return res->second.get_longest_prefix(key, len, offset + 1); | |
| } | |
| return std::make_pair(key, offset); | |
| } | |
| const struct naive_trie * traverse(const char c) const { | |
| auto res = children.find(c); | |
| if (res != children.end()) { | |
| return &res->second; | |
| } | |
| return NULL; | |
| } | |
| std::map<char, struct naive_trie> children; | |
| bool has_value; | |
| llama_token value; | |
| }; | |
| // | |
| // impl | |
| // | |
| struct llm_tokenizer { | |
| llm_tokenizer() {} | |
| virtual ~llm_tokenizer() = default; | |
| }; | |
| llama_vocab::~llama_vocab() { | |
| delete tokenizer; | |
| } | |
| int llama_vocab::find_bpe_rank(const std::string & token_left, const std::string & token_right) const { | |
| GGML_ASSERT(token_left.find(' ') == std::string::npos); | |
| GGML_ASSERT(token_left.find('\n') == std::string::npos); | |
| GGML_ASSERT(token_right.find(' ') == std::string::npos); | |
| GGML_ASSERT(token_right.find('\n') == std::string::npos); | |
| auto it = bpe_ranks.find(std::make_pair(token_left, token_right)); | |
| if (it == bpe_ranks.end()) { | |
| return -1; | |
| } | |
| return it->second; | |
| } | |
| static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) { | |
| return vocab.type; | |
| } | |
| static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) { | |
| GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); | |
| return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL; | |
| } | |
| static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) { | |
| GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); | |
| return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN; | |
| } | |
| static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) { | |
| GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); | |
| return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL; | |
| } | |
| static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) { | |
| GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); | |
| return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE; | |
| } | |
| static bool llama_is_user_defined_token(const llama_vocab & vocab, llama_token id) { | |
| GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); | |
| return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED; | |
| } | |
| static bool llama_is_unused_token(const llama_vocab & vocab, llama_token id) { | |
| GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); | |
| return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNUSED; | |
| } | |
| static uint8_t llama_token_to_byte(const llama_vocab & vocab, llama_token id) { | |
| GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE); | |
| GGML_ASSERT(llama_is_byte_token(vocab, id)); | |
| const auto & token_data = vocab.id_to_token.at(id); | |
| switch (llama_vocab_get_type(vocab)) { | |
| case LLAMA_VOCAB_TYPE_SPM: | |
| case LLAMA_VOCAB_TYPE_UGM: { | |
| auto buf = token_data.text.substr(3, 2); | |
| return strtol(buf.c_str(), NULL, 16); | |
| } | |
| case LLAMA_VOCAB_TYPE_BPE: { | |
| GGML_ABORT("fatal error"); | |
| //return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT? | |
| } | |
| case LLAMA_VOCAB_TYPE_WPM: { | |
| GGML_ABORT("fatal error"); | |
| } | |
| default: | |
| GGML_ABORT("fatal error"); | |
| } | |
| } | |
| static void llama_escape_whitespace(std::string & text) { | |
| replace_all(text, " ", "\xe2\x96\x81"); | |
| } | |
| static void llama_unescape_whitespace(std::string & word) { | |
| replace_all(word, "\xe2\x96\x81", " "); | |
| } | |
| struct llm_symbol { | |
| using index = int; | |
| index prev; | |
| index next; | |
| const char * text; | |
| size_t n; | |
| }; | |
| static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable"); | |
| // | |
| // SPM tokenizer | |
| // original implementation: | |
| // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4 | |
| // | |
| struct llm_bigram_spm { | |
| struct comparator { | |
| bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) { | |
| return (l.score < r.score) || (l.score == r.score && l.left > r.left); | |
| } | |
| }; | |
| using queue_storage = std::vector<llm_bigram_spm>; | |
| using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>; | |
| llm_symbol::index left; | |
| llm_symbol::index right; | |
| float score; | |
| size_t size; | |
| }; | |
| struct llm_tokenizer_spm : llm_tokenizer { | |
| llm_tokenizer_spm(const llama_vocab & /*vocab*/) : llm_tokenizer() {} | |
| }; | |
| struct llm_tokenizer_spm_session { | |
| llm_tokenizer_spm_session(const llama_vocab & vocab) : vocab(vocab) {} | |
| void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) { | |
| // split string into utf8 chars | |
| int index = 0; | |
| size_t offs = 0; | |
| while (offs < text.size()) { | |
| llm_symbol sym; | |
| size_t len = unicode_len_utf8(text[offs]); | |
| sym.text = text.c_str() + offs; | |
| sym.n = std::min(len, text.size() - offs); | |
| offs += sym.n; | |
| sym.prev = index - 1; | |
| sym.next = offs == text.size() ? -1 : index + 1; | |
| index++; | |
| symbols.emplace_back(sym); | |
| } | |
| // seed the work queue with all possible 2-character tokens. | |
| for (int i = 1; i < (int) symbols.size(); ++i) { | |
| try_add_bigram(i - 1, i); | |
| } | |
| // keep substituting the highest frequency pairs for as long as we can. | |
| while (!work_queue.empty()) { | |
| auto bigram = work_queue.top(); | |
| work_queue.pop(); | |
| auto & left_sym = symbols[bigram.left]; | |
| auto & right_sym = symbols[bigram.right]; | |
| // if one of the symbols already got merged, skip it. | |
| if (left_sym.n == 0 || right_sym.n == 0 || | |
| left_sym.n + right_sym.n != bigram.size) { | |
| continue; | |
| } | |
| // merge the right sym into the left one | |
| left_sym.n += right_sym.n; | |
| right_sym.n = 0; | |
| //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size); | |
| // remove the right sym from the chain | |
| left_sym.next = right_sym.next; | |
| if (right_sym.next >= 0) { | |
| symbols[right_sym.next].prev = bigram.left; | |
| } | |
| // find more substitutions | |
| try_add_bigram(left_sym.prev, bigram.left); | |
| try_add_bigram(bigram.left, left_sym.next); | |
| } | |
| for (int i = 0; i != -1; i = symbols[i].next) { | |
| auto & symbol = symbols[i]; | |
| resegment(symbol, output); | |
| } | |
| } | |
| private: | |
| void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) { | |
| auto text = std::string(symbol.text, symbol.n); | |
| auto token = vocab.token_to_id.find(text); | |
| // Do we need to support is_unused? | |
| if (token != vocab.token_to_id.end()) { | |
| output.push_back((*token).second); | |
| return; | |
| } | |
| const auto p = rev_merge.find(text); | |
| if (p == rev_merge.end()) { | |
| // output any symbols that did not form tokens as bytes. | |
| output.reserve(output.size() + symbol.n); | |
| for (int j = 0; j < (int)symbol.n; ++j) { | |
| llama_vocab::id token_id = llama_byte_to_token_impl(vocab, symbol.text[j]); | |
| output.push_back(token_id); | |
| } | |
| return; | |
| } | |
| resegment(symbols[p->second.first], output); | |
| resegment(symbols[p->second.second], output); | |
| } | |
| void try_add_bigram(int left, int right) { | |
| if (left == -1 || right == -1) { | |
| return; | |
| } | |
| const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n); | |
| auto token = vocab.token_to_id.find(text); | |
| if (token == vocab.token_to_id.end()) { | |
| return; | |
| } | |
| if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) { | |
| return; | |
| } | |
| const auto & tok_data = vocab.id_to_token[(*token).second]; | |
| llm_bigram_spm bigram; | |
| bigram.left = left; | |
| bigram.right = right; | |
| bigram.score = tok_data.score; | |
| bigram.size = text.size(); | |
| work_queue.push(bigram); | |
| // Do we need to support is_unused? | |
| rev_merge[text] = std::make_pair(left, right); | |
| } | |
| const llama_vocab & vocab; | |
| // currently unused | |
| // const llm_tokenizer_spm * spm_tokenizer; | |
| std::vector<llm_symbol> symbols; | |
| llm_bigram_spm::queue work_queue; | |
| std::map<std::string, std::pair<int, int>> rev_merge; | |
| }; | |
| // | |
| // BPE tokenizer | |
| // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License] | |
| // tried to simplify unicode stuff, so most likely does not work 100% correctly! | |
| // | |
| // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused | |
| template<typename T, typename Container = std::vector<T>, typename Compare = std::less<typename Container::value_type>> | |
| class llama_priority_queue : public std::priority_queue<T, Container, Compare> { | |
| public: | |
| using std::priority_queue<T, Container, Compare>::priority_queue; | |
| T pop_move() { | |
| T item = std::move(this->c.front()); | |
| std::pop_heap(this->c.begin(), this->c.end(), this->comp); | |
| this->c.pop_back(); | |
| return item; | |
| } | |
| void pop() = delete; | |
| }; | |
| struct llm_bigram_bpe { | |
| struct comparator { | |
| bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const { | |
| return l.rank > r.rank || (l.rank == r.rank && l.left > r.left); | |
| } | |
| }; | |
| using queue_storage = std::vector<llm_bigram_bpe>; | |
| using queue = llama_priority_queue<llm_bigram_bpe, queue_storage, comparator>; | |
| llm_symbol::index left; | |
| llm_symbol::index right; | |
| std::string text; | |
| int rank; | |
| size_t size; | |
| }; | |
| struct llm_tokenizer_bpe : llm_tokenizer { | |
| llm_tokenizer_bpe(const llama_vocab & vocab) : llm_tokenizer() { | |
| GGML_ASSERT(vocab.type == LLAMA_VOCAB_TYPE_BPE); | |
| switch (vocab.type_pre) { | |
| case LLAMA_VOCAB_PRE_TYPE_LLAMA3: | |
| regex_exprs = { | |
| // original regex from tokenizer.json | |
| //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", | |
| // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989 | |
| "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", | |
| }; | |
| break; | |
| case LLAMA_VOCAB_PRE_TYPE_DBRX: | |
| case LLAMA_VOCAB_PRE_TYPE_SMAUG: | |
| regex_exprs = { | |
| // same as llama3 | |
| "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", | |
| }; | |
| break; | |
| case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM: | |
| regex_exprs = { | |
| "[\r\n]", | |
| "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+", | |
| "\\s?[!-/:-~!-/:-~‘-‟ -。]+", | |
| "\\s+$", | |
| "[一-龥ࠀ-一가-]+", | |
| "\\p{N}+", | |
| }; | |
| break; | |
| case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER: | |
| regex_exprs = { | |
| "[\r\n]", | |
| "\\s?\\p{L}+", | |
| "\\s?\\p{P}+", | |
| "[一-龥ࠀ-一가-]+", | |
| "\\p{N}", | |
| }; | |
| break; | |
| case LLAMA_VOCAB_PRE_TYPE_FALCON: | |
| regex_exprs = { | |
| "[\\p{P}\\$\\+<=>\\^~\\|`]+", | |
| "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", | |
| "[0-9][0-9][0-9]", | |
| }; | |
| break; | |
| case LLAMA_VOCAB_PRE_TYPE_STARCODER: | |
| case LLAMA_VOCAB_PRE_TYPE_REFACT: | |
| case LLAMA_VOCAB_PRE_TYPE_COMMAND_R: | |
| case LLAMA_VOCAB_PRE_TYPE_SMOLLM: | |
| case LLAMA_VOCAB_PRE_TYPE_CODESHELL: | |
| case LLAMA_VOCAB_PRE_TYPE_EXAONE: | |
| regex_exprs = { | |
| "\\p{N}", | |
| "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", | |
| }; | |
| break; | |
| case LLAMA_VOCAB_PRE_TYPE_GPT2: | |
| case LLAMA_VOCAB_PRE_TYPE_MPT: | |
| case LLAMA_VOCAB_PRE_TYPE_OLMO: | |
| case LLAMA_VOCAB_PRE_TYPE_JAIS: | |
| regex_exprs = { | |
| "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", | |
| }; | |
| break; | |
| case LLAMA_VOCAB_PRE_TYPE_STABLELM2: | |
| case LLAMA_VOCAB_PRE_TYPE_QWEN2: | |
| regex_exprs = { | |
| // original regex from tokenizer.json | |
| // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" | |
| "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", | |
| }; | |
| break; | |
| case LLAMA_VOCAB_PRE_TYPE_PORO: | |
| case LLAMA_VOCAB_PRE_TYPE_BLOOM: | |
| case LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH: | |
| regex_exprs = { | |
| " ?[^(\\s|.,!?…。,、।۔،)]+", | |
| }; | |
| break; | |
| case LLAMA_VOCAB_PRE_TYPE_CHATGLM4: | |
| regex_exprs = { | |
| "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", | |
| }; | |
| break; | |
| case LLAMA_VOCAB_PRE_TYPE_VIKING: | |
| regex_exprs = { | |
| " ?[^(\\s|.,!?…。,、।۔،)]+", | |
| "\\p{N}", | |
| }; | |
| break; | |
| case LLAMA_VOCAB_PRE_TYPE_TEKKEN: | |
| // original regex from tokenizer.json | |
| // "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" | |
| regex_exprs = { | |
| "[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", | |
| }; | |
| break; | |
| case LLAMA_VOCAB_PRE_TYPE_CHAMELEON: | |
| // Note: in theory, the special token (sentinel and image token) regex_exprs below | |
| // are unnecessary, as they are split in `tokenizer_st_partition` anyway. | |
| // However, since the upstream pre-tokenizer uses them, they are also | |
| // included here (see https://huggingface.co/facebook/chameleon-7b). | |
| regex_exprs = { | |
| "<sentinel:[0-9]+>", // Sentinel tokens | |
| "(IMGIMG)((A|B|C|D|E|F|G|H|I){1,4})Z", // Image tokens | |
| "([\\t\\n]| | )", // directly from tokenizer.json | |
| "\\p{N}", // Individual digits | |
| "[\\p{P}!-/:-@\\[-`{-~]", // Punctuation, Isolated | |
| "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", | |
| }; | |
| break; | |
| default: | |
| // default regex for BPE tokenization pre-processing | |
| regex_exprs = { | |
| "[\\p{P}\\$\\+<=>\\^~\\|]+", | |
| "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", | |
| "\\p{N}+", | |
| "[0-9][0-9][0-9]", | |
| }; | |
| break; | |
| } | |
| } | |
| std::vector<std::string> regex_exprs; | |
| }; | |
| struct llm_tokenizer_bpe_session { | |
| llm_tokenizer_bpe_session(const llama_vocab & vocab) : vocab(vocab), | |
| bpe_tokenizer(static_cast<const llm_tokenizer_bpe *>(vocab.tokenizer)) {} | |
| static void append(const llama_vocab::id token_id, std::vector<llama_vocab::id> & output) { | |
| output.push_back(token_id); | |
| } | |
| bool append_bos(std::vector<llama_vocab::id> & output) const { | |
| if (vocab.tokenizer_add_bos) { | |
| GGML_ASSERT(vocab.special_bos_id != -1); | |
| output.push_back(vocab.special_bos_id); | |
| return true; | |
| } | |
| return false; | |
| } | |
| bool append_eos(std::vector<llama_vocab::id> & output) const { | |
| if (vocab.tokenizer_add_eos) { | |
| GGML_ASSERT(vocab.special_eos_id != -1); | |
| output.push_back(vocab.special_eos_id); | |
| return true; | |
| } | |
| return false; | |
| } | |
| void check_double_bos_eos(const std::vector<llama_vocab::id> & output) const { | |
| if (vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) { | |
| LLAMA_LOG_WARN( | |
| "%s: Added a BOS token to the prompt as specified by the model but the prompt " | |
| "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. " | |
| "Are you sure this is what you want?\n", __FUNCTION__); | |
| } | |
| if (vocab.tokenizer_add_eos && output.size() >= 2 && *(output.end()-2) == vocab.special_eos_id) { | |
| LLAMA_LOG_WARN( | |
| "%s: Added a EOS token to the prompt as specified by the model but the prompt " | |
| "also ends with a EOS token. So now the final prompt ends with 2 EOS tokens. " | |
| "Are you sure this is what you want?\n", __FUNCTION__); | |
| } | |
| } | |
| void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) { | |
| int final_prev_index = -1; | |
| const auto word_collection = unicode_regex_split(text, bpe_tokenizer->regex_exprs); | |
| symbols_final.clear(); | |
| for (const auto & word : word_collection) { | |
| work_queue = llm_bigram_bpe::queue(); | |
| symbols.clear(); | |
| int index = 0; | |
| size_t offset = 0; | |
| if (vocab.tokenizer_ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) { | |
| symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()}); | |
| offset = word.size(); | |
| } | |
| while (offset < word.size()) { | |
| llm_symbol sym; | |
| size_t char_len = std::min(word.size() - offset, (size_t) unicode_len_utf8(word[offset])); | |
| sym.text = word.c_str() + offset; | |
| sym.n = char_len; | |
| offset += sym.n; | |
| sym.prev = index - 1; | |
| sym.next = offset == word.size() ? -1 : index + 1; | |
| index++; | |
| symbols.emplace_back(sym); | |
| } | |
| for (int i = 1; i < (int) symbols.size(); ++i) { | |
| add_new_bigram(i - 1, i); | |
| } | |
| // build token(s) | |
| while (!work_queue.empty()) { | |
| auto bigram = work_queue.pop_move(); | |
| auto & left_symbol = symbols[bigram.left]; | |
| auto & right_symbol = symbols[bigram.right]; | |
| if (left_symbol.n == 0 || right_symbol.n == 0) { | |
| continue; | |
| } | |
| std::string left_token = std::string(left_symbol.text, left_symbol.n); | |
| std::string right_token = std::string(right_symbol.text, right_symbol.n); | |
| if (left_token + right_token != bigram.text) { | |
| continue; // Skip this bigram if it's outdated | |
| } | |
| // merge the right sym into the left one | |
| left_symbol.n += right_symbol.n; | |
| right_symbol.n = 0; | |
| // remove the right sym from the chain | |
| left_symbol.next = right_symbol.next; | |
| if (right_symbol.next >= 0) { | |
| symbols[right_symbol.next].prev = bigram.left; | |
| } | |
| add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol | |
| add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol | |
| } | |
| // add the finished tokens to the final list keeping correct order for next and prev | |
| for (auto & sym : symbols) { | |
| if (sym.n > 0) { | |
| sym.prev = final_prev_index; | |
| sym.next = -1; | |
| if (final_prev_index != -1) { | |
| symbols_final[final_prev_index].next = symbols_final.size(); | |
| } | |
| symbols_final.emplace_back(sym); | |
| final_prev_index = symbols_final.size() - 1; | |
| } | |
| } | |
| } | |
| symbols = symbols_final; | |
| if (!symbols.empty()) { | |
| for (int i = 0; i != -1; i = symbols[i].next) { | |
| auto & symbol = symbols[i]; | |
| if (symbol.n == 0) { | |
| continue; | |
| } | |
| const std::string str = std::string(symbol.text, symbol.n); | |
| const auto token = vocab.token_to_id.find(str); | |
| if (token == vocab.token_to_id.end()) { | |
| for (auto j = str.begin(); j != str.end(); ++j) { | |
| std::string byte_str(1, *j); | |
| auto token_multibyte = vocab.token_to_id.find(byte_str); | |
| if (token_multibyte != vocab.token_to_id.end()) { | |
| output.push_back(token_multibyte->second); | |
| } | |
| } | |
| } else { | |
| output.push_back((*token).second); | |
| } | |
| } | |
| } | |
| } | |
| private: | |
| void add_new_bigram(int left, int right) { | |
| if (left == -1 || right == -1) { | |
| return; | |
| } | |
| std::string left_token = std::string(symbols[left].text, symbols[left].n); | |
| std::string right_token = std::string(symbols[right].text, symbols[right].n); | |
| int rank_found = -1; | |
| rank_found = vocab.find_bpe_rank(left_token, right_token); | |
| if (rank_found < 0) { | |
| return; | |
| } | |
| llm_bigram_bpe bigram; | |
| bigram.left = left; | |
| bigram.right = right; | |
| bigram.text = left_token + right_token; | |
| bigram.size = left_token.size() + right_token.size(); | |
| bigram.rank = rank_found; | |
| work_queue.push(bigram); | |
| } | |
| const llama_vocab & vocab; | |
| const llm_tokenizer_bpe * bpe_tokenizer; | |
| std::vector<llm_symbol> symbols; | |
| std::vector<llm_symbol> symbols_final; | |
| llm_bigram_bpe::queue work_queue; | |
| }; | |
| // | |
| // WPM tokenizer | |
| // | |
| struct llm_tokenizer_wpm : llm_tokenizer { | |
| llm_tokenizer_wpm(const llama_vocab & /*vocab*/) : llm_tokenizer() {} | |
| }; | |
| struct llm_tokenizer_wpm_session { | |
| llm_tokenizer_wpm_session(const llama_vocab & vocab) : vocab(vocab) {} | |
| void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) { | |
| const auto & token_map = vocab.token_to_id; | |
| // normalize and split by whitespace | |
| std::vector<std::string> words = preprocess(text); | |
| // bos token prepended already | |
| // find the longest tokens that form the words | |
| for (const std::string & word : words) { | |
| // skip empty words | |
| if (word.size() == 0) { | |
| continue; | |
| } | |
| // prepend phantom space | |
| const std::string word1 = "\xe2\x96\x81" + word; | |
| const int n = word1.size(); | |
| const size_t current_tokens = output.size(); | |
| // we're at the start of a new word | |
| // move through character position in word | |
| for (int i = 0; i < n; ++i) { | |
| // loop through possible match length | |
| bool match = false; | |
| for (int j = std::min(n, i + vocab.max_token_len + 1); j > i; j--) { | |
| auto it = token_map.find(word1.substr(i, j - i)); | |
| if (it != token_map.end()) { | |
| output.push_back(it->second); | |
| match = true; | |
| i = j - 1; | |
| break; | |
| } | |
| } | |
| if (!match) { // discard all | |
| output.resize(current_tokens); | |
| break; // and discard next tokens | |
| } | |
| } | |
| // we didn't find any matches for this word | |
| if (current_tokens == output.size()) { | |
| output.push_back(vocab.special_unk_id); | |
| } | |
| } | |
| } | |
| // TODO: reduce string copies by using cpts_offs array | |
| static std::vector<std::string> preprocess(const std::string & text) { | |
| const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text)); | |
| std::vector<std::string> words(1, ""); | |
| for (const uint32_t cpt : cpts_nfd) { | |
| const auto flags = unicode_cpt_flags(cpt); | |
| if (flags.is_whitespace) { | |
| if (words.back().size()) { // finish previous word if any | |
| words.emplace_back(); | |
| } | |
| continue; | |
| } | |
| assert (!flags.is_separator); | |
| if (cpt == 0 || cpt == 0xFFFD || flags.is_control) { | |
| continue; | |
| } | |
| const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt)); | |
| if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) { | |
| if (words.back().size()) { // finish previous word if any | |
| words.emplace_back(); | |
| } | |
| words.back() = s; // single char word | |
| words.emplace_back(); // start a new word | |
| } else { | |
| words.back() += s; // append char to word | |
| } | |
| } | |
| if (!words.back().size()) { | |
| words.pop_back(); | |
| } | |
| return words; | |
| } | |
| static bool is_chinese_char(uint32_t cpt) { | |
| return | |
| (cpt >= 0x04E00 && cpt <= 0x09FFF) || | |
| (cpt >= 0x03400 && cpt <= 0x04DBF) || | |
| (cpt >= 0x20000 && cpt <= 0x2A6DF) || | |
| (cpt >= 0x2A700 && cpt <= 0x2B73F) || | |
| (cpt >= 0x2B740 && cpt <= 0x2B81F) || | |
| (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920 | |
| (cpt >= 0x0F900 && cpt <= 0x0FAFF) || | |
| (cpt >= 0x2F800 && cpt <= 0x2FA1F); | |
| //(cpt >= 0x3000 && cpt <= 0x303F) || | |
| //(cpt >= 0xFF00 && cpt <= 0xFFEF); | |
| } | |
| private: | |
| const llama_vocab & vocab; | |
| // currently unused | |
| // const llm_tokenizer_wpm * wpm_tokenizer; | |
| }; | |
| // | |
| // UGM tokenizer | |
| // | |
| struct llm_tokenizer_ugm : llm_tokenizer { | |
| llm_tokenizer_ugm(const llama_vocab & vocab) : llm_tokenizer() { | |
| if (vocab.precompiled_charsmap.size() > 0) { | |
| size_t charsmap_offset = 0; | |
| // First four bytes of precompiled_charsmap contains length of binary | |
| // blob containing XOR-compressed compact double array (XCDA) entries | |
| uint32_t xcda_blob_size = *(const uint32_t *) &vocab.precompiled_charsmap[0]; | |
| charsmap_offset += sizeof(xcda_blob_size); | |
| if (xcda_blob_size + charsmap_offset >= vocab.precompiled_charsmap.size()) { | |
| throw std::runtime_error("Index out of array bounds in precompiled charsmap!"); | |
| } | |
| // Next xcda_blob_size bytes contain entries of XOR-compressed compact | |
| // double array (XCDA). Each entry is bit-packed into a 32-bit integer. | |
| xcda_array = (const uint32_t *) &vocab.precompiled_charsmap[charsmap_offset]; | |
| xcda_array_size = xcda_blob_size / sizeof(uint32_t); | |
| charsmap_offset += xcda_blob_size; | |
| // Remaining bytes of precompiled charsmap contain null-terminated | |
| // replacement strings for prefixes matched by the XCDA. | |
| prefix_replacements = &vocab.precompiled_charsmap[charsmap_offset]; | |
| prefix_replacements_size = vocab.precompiled_charsmap.size() - charsmap_offset; | |
| } | |
| for (unsigned int id = 0; id < vocab.id_to_token.size(); ++id) { | |
| const auto &token_data = vocab.id_to_token[id]; | |
| if (llama_is_normal_token(vocab, id)) { | |
| min_score = std::min<float>(min_score, token_data.score); | |
| max_score = std::max<float>(max_score, token_data.score); | |
| } | |
| if (llama_is_normal_token(vocab, id) || | |
| llama_is_user_defined_token(vocab, id) || | |
| llama_is_unused_token(vocab, id)) { | |
| token_matcher.insert(token_data.text.data(), token_data.text.size(), id); | |
| } | |
| if (llama_is_user_defined_token(vocab, id)) { | |
| user_defined_token_matcher.insert(token_data.text.data(), token_data.text.size()); | |
| } | |
| } | |
| unknown_token_score = min_score - unknown_token_score_penalty; | |
| } | |
| // escaped space symbol - U+2581 (Lower One Eighth Block) | |
| const std::string escaped_space = "\xE2\x96\x81"; | |
| const char * prefix_replacements = NULL; | |
| size_t prefix_replacements_size = 0; | |
| const uint32_t * xcda_array = NULL; | |
| size_t xcda_array_size = 0; | |
| struct naive_trie user_defined_token_matcher; | |
| float min_score = FLT_MAX; | |
| float max_score = -FLT_MAX; | |
| float unknown_token_score_penalty = 10.0; | |
| float unknown_token_score; | |
| struct naive_trie token_matcher; | |
| }; | |
| struct llm_tokenizer_ugm_session { | |
| llm_tokenizer_ugm_session(const llama_vocab & vocab) : vocab(vocab), | |
| ugm_tokenizer(static_cast<const llm_tokenizer_ugm *>(vocab.tokenizer)) {} | |
| /* This implementation is based on SentencePiece optimized Viterbi algorithm for | |
| * unigram language models. The general idea is to: | |
| * - move along the input sequence in steps of one UTF code point, | |
| * - at each step find all possible tokenizations of the prefix by | |
| * traversing the tokens trie, | |
| * - for each tokenization store the best one so far (by higher score) | |
| * - use the position in sequence after given token as an index to store | |
| * results | |
| * - if there was no valid tokenization of the current UTF code point | |
| * then use unknown token with additional score penalty | |
| * After processing the whole sequence we backtrack from the end to get | |
| * the best tokenization. | |
| */ | |
| void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) { | |
| // get current size of output (for reversal later) | |
| size_t output_size = output.size(); | |
| // normalize the input first | |
| std::string normalized; | |
| normalize(text, &normalized); | |
| size_t input_len = normalized.size(); | |
| if (input_len == 0) { | |
| return; | |
| } | |
| // initialize score_sum to -FLT_MAX so it will be always lower than sums of token scores | |
| std::vector<struct best_tokenization> tokenization_results(input_len + 1, {vocab.special_unk_id, 0, -FLT_MAX}); | |
| // at the beginning tokenization score is zero | |
| tokenization_results[0] = { vocab.special_unk_id, 0, 0 }; | |
| for (size_t input_offset = 0; input_offset < input_len;) { | |
| size_t prefix_offset = input_offset; | |
| // calculate how many code units are in the currently processed UTF code point | |
| size_t n_utf8_code_units = std::min<size_t>(unicode_len_utf8(normalized[input_offset]), input_len - input_offset); | |
| // traverse the token matcher trie to find a matching token | |
| bool single_codepoint_token_found = false; | |
| const struct best_tokenization & current_best = tokenization_results[input_offset]; | |
| const struct naive_trie * node = ugm_tokenizer->token_matcher.traverse(normalized[prefix_offset++]); | |
| while (prefix_offset <= input_len && node != NULL) { | |
| // check if we found valid token in prefix | |
| if (node->has_value) { | |
| // check if it corresponds to the whole UTF code point | |
| if (prefix_offset - input_offset == n_utf8_code_units) { | |
| single_codepoint_token_found = true; | |
| } | |
| llama_token token_id = node->value; | |
| const auto & token_data = vocab.id_to_token[token_id]; | |
| // we set the user-defined token scores to 0 to make them more likely to be selected | |
| // (normal token scores are log probabilities, so they are negative) | |
| // score type is double here to make tokenization results exactly | |
| // the same as in the HF tokenizer using SentencePiece | |
| const double token_score = llama_is_user_defined_token(vocab, token_id) ? 0.0 : token_data.score; | |
| const double challenger_score = current_best.score_sum + token_score; | |
| struct best_tokenization & current_champ = tokenization_results[prefix_offset]; | |
| if (challenger_score > current_champ.score_sum) { | |
| struct best_tokenization challenger = { token_id, input_offset, (float) challenger_score }; | |
| current_champ = challenger; | |
| } | |
| } | |
| node = node->traverse(normalized[prefix_offset++]); | |
| } | |
| // if we didn't find a valid token corresponding to the whole UTF code point | |
| // then use unknown token as the tokenization of this UTF code point | |
| if (!single_codepoint_token_found) { | |
| const double challenger_score = current_best.score_sum + ugm_tokenizer->unknown_token_score; | |
| prefix_offset = input_offset + n_utf8_code_units; | |
| struct best_tokenization & current_champ = tokenization_results[prefix_offset]; | |
| if (challenger_score > current_champ.score_sum) { | |
| struct best_tokenization challenger = { vocab.special_unk_id, input_offset, (float) challenger_score }; | |
| current_champ = challenger; | |
| } | |
| } | |
| // move to the next UTF code point | |
| input_offset += n_utf8_code_units; | |
| } | |
| // now backtrack from the end to gather token ids of the best tokenization | |
| // merge sequences of consecutive unknown tokens into single unknown tokens | |
| bool is_prev_unknown = false; | |
| for (struct best_tokenization & tokenization = tokenization_results[input_len]; ; tokenization = tokenization_results[tokenization.input_offset]) { | |
| bool is_unknown = tokenization.token_id == vocab.special_unk_id; | |
| if (!(is_prev_unknown && is_unknown)) { | |
| output.push_back(tokenization.token_id); | |
| } | |
| if (tokenization.input_offset == 0) { | |
| break; | |
| } | |
| is_prev_unknown = is_unknown; | |
| } | |
| // reverse the output since we added tokens starting from the end of the input | |
| std::reverse(output.begin() + output_size, output.end()); | |
| } | |
| private: | |
| // helper structure for returning normalization results | |
| struct normalization_result { | |
| const char * normalized; | |
| size_t normalized_len; | |
| size_t consumed_input; | |
| }; | |
| void normalize(const std::string& input, std::string * normalized) { | |
| normalized->clear(); | |
| normalized->reserve(input.size() * 3); | |
| const std::string space = vocab.tokenizer_escape_whitespaces ? ugm_tokenizer->escaped_space : " "; | |
| bool shall_prepend_space = !vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix; | |
| bool shall_append_space = vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix; | |
| bool shall_merge_spaces = vocab.tokenizer_remove_extra_whitespaces; | |
| bool is_space_prepended = false; | |
| bool processing_non_ws = false; | |
| size_t input_len = input.size(); | |
| for (size_t input_offset = 0; input_offset < input_len; ) { | |
| auto norm_res = normalize_prefix(input, input_offset); | |
| for (size_t i = 0; i < norm_res.normalized_len; i++) { | |
| char c = norm_res.normalized[i]; | |
| if (c != ' ') { | |
| if (!processing_non_ws) { | |
| processing_non_ws = true; | |
| if ((shall_prepend_space && !is_space_prepended) || shall_merge_spaces) { | |
| normalized->append(space); | |
| is_space_prepended = true; | |
| } | |
| } | |
| normalized->push_back(c); | |
| } else { | |
| if (processing_non_ws) { | |
| processing_non_ws = false; | |
| } | |
| if (!shall_merge_spaces) { | |
| normalized->append(space); | |
| } | |
| } | |
| } | |
| input_offset += norm_res.consumed_input; | |
| } | |
| if (shall_append_space) { | |
| normalized->append(space); | |
| } | |
| } | |
| /* | |
| * This structure is a view wrapper for XOR-compressed double array (XCDA) | |
| * See Shunsuke Kanda (2018). Space- and Time-Efficient String Dictionaries. | |
| * Each bit-packed entry contains: | |
| * - BASE array value in bits 10-30 | |
| * - LCHECK array value in bits 0-7 | |
| * - LEAF array value in bit 9 | |
| * Entries containing indexes of replacement sequences have set bit 31 | |
| */ | |
| struct xcda_array_view { | |
| public: | |
| xcda_array_view(const uint32_t * xcda_array, size_t xcda_array_size) : xcda_array(xcda_array), xcda_array_size(xcda_array_size) { | |
| } | |
| uint32_t get_base(size_t index) { | |
| uint32_t packed_node = get_node(index); | |
| return (packed_node >> 10) << ((packed_node & (1U << 9)) >> 6); | |
| } | |
| uint32_t get_lcheck(size_t index) { | |
| uint32_t packed_node = get_node(index); | |
| return packed_node & ((1U << 31) | 0xff); | |
| } | |
| bool get_leaf(size_t index) { | |
| uint32_t packed_node = get_node(index); | |
| return (packed_node >> 8) & 1; | |
| } | |
| uint32_t get_value(size_t index) { | |
| uint32_t packed_node = get_node(index); | |
| return packed_node & ((1U << 31) - 1); | |
| } | |
| private: | |
| uint32_t get_node(size_t index) { | |
| if (index > xcda_array_size) { | |
| throw std::runtime_error("Index out of array bounds in XCDA array!"); | |
| } | |
| return xcda_array[index]; | |
| } | |
| const uint32_t * xcda_array; | |
| size_t xcda_array_size; | |
| }; | |
| // this structure stores the best tokenization so far at input_offset | |
| struct best_tokenization { | |
| llama_token token_id; | |
| size_t input_offset; | |
| float score_sum; | |
| }; | |
| struct normalization_result normalize_prefix(const std::string & input, size_t input_offset) { | |
| if (input_offset == input.size()) { | |
| return { &input[input_offset], 0, 0 }; | |
| } | |
| // if input prefix matches some user-defined token return this token as normalization result | |
| auto user_defined_token_match = | |
| ugm_tokenizer->user_defined_token_matcher.get_longest_prefix(&input[input_offset], input.size() - input_offset); | |
| if (user_defined_token_match.second > 0) { | |
| return { &input[input_offset], user_defined_token_match.second, user_defined_token_match.second }; | |
| } | |
| size_t longest_prefix_length = 0; | |
| size_t longest_prefix_offset = 0; | |
| if (ugm_tokenizer->xcda_array_size > 0) { | |
| struct xcda_array_view xcda_view(ugm_tokenizer->xcda_array, ugm_tokenizer->xcda_array_size); | |
| // Find the longest normalized sequence matching the input prefix by walking | |
| // the XOR-compressed compact double array (XCDA) starting from the root node | |
| // We find the index of the next node by calculating BASE[s] ^ c where s is | |
| // the index of the previous node and c is a numerical character value | |
| uint32_t node_index = 0; | |
| // get BASE of the root node | |
| node_index = xcda_view.get_base(node_index); | |
| for (size_t prefix_offset = input_offset; prefix_offset < input.size(); prefix_offset++) { | |
| unsigned char c = input[prefix_offset]; | |
| if (c == 0) { | |
| break; | |
| } | |
| node_index ^= c; | |
| // if value of LCHECK is not c it means that this is not a child of | |
| // the previous node, so we stop matching | |
| if (xcda_view.get_lcheck(node_index) != c) { | |
| break; | |
| } | |
| bool is_leaf = xcda_view.get_leaf(node_index); | |
| // get BASE of the current node | |
| node_index ^= xcda_view.get_base(node_index); | |
| // if LEAF of the current node is true, it means that its BASE points to the node | |
| // containing index of replacement sequence for currently matched input prefix | |
| if (is_leaf) | |
| { | |
| longest_prefix_length = prefix_offset - input_offset + 1; | |
| // get index of replacement sequence for currently matched input prefix | |
| longest_prefix_offset = xcda_view.get_value(node_index); | |
| } | |
| } | |
| } | |
| if (longest_prefix_length > 0) { | |
| // we have a match, so return the replacement sequence | |
| if (longest_prefix_offset >= ugm_tokenizer->prefix_replacements_size) { | |
| throw std::runtime_error("Index out of array bounds in precompiled charsmap!"); | |
| } | |
| const char * prefix_replacement = &(ugm_tokenizer->prefix_replacements)[longest_prefix_offset]; | |
| return { prefix_replacement, strlen(prefix_replacement), longest_prefix_length }; | |
| } | |
| // check if the input prefix contains a valid sequence of UTF-8 code units | |
| try { | |
| // if yes, return this sequence unmodified | |
| size_t prefix_offset = input_offset; | |
| unicode_cpt_from_utf8(input, prefix_offset); | |
| return { &input[input_offset], prefix_offset - input_offset, prefix_offset - input_offset }; | |
| } catch (std::invalid_argument & /*ex*/) { | |
| // if no, consume 1 byte and return U+FFFD - REPLACEMENT CHARACTER | |
| return { "\xEF\xBF\xBD", 3, 1 }; | |
| } | |
| } | |
| const llama_vocab & vocab; | |
| const llm_tokenizer_ugm * ugm_tokenizer; | |
| }; | |
| // | |
| // RWKV tokenizer | |
| // | |
| static std::vector<uint8_t> llama_unescape_rwkv_token(const std::string & escaped) { | |
| std::vector<uint8_t> output; | |
| output.reserve(escaped.size()); | |
| // Parser state | |
| bool escaping = false; | |
| uint8_t hex_remaining = 0; | |
| uint8_t hex_acc = 0; | |
| // Step through characters, performing parsing | |
| for (const char & c : escaped) { | |
| // If we're parsing a hex code, interpret the next character | |
| if (hex_remaining != 0) { | |
| uint8_t value = (c >= 'a') ? (c - 'a' + 10) : (c - '0'); | |
| hex_acc = (hex_acc << 4) + value; | |
| hex_remaining -= 1; | |
| if (hex_remaining == 0) { | |
| output.push_back(hex_acc); | |
| hex_acc = 0; | |
| } | |
| continue; | |
| } | |
| // If we got an escape character, interpret it | |
| if (escaping) { | |
| if (c == 't') { | |
| output.push_back('\t'); | |
| } else if (c == 'n') { | |
| output.push_back('\n'); | |
| } else if (c == 'r') { | |
| output.push_back('\r'); | |
| } else if (c == 'x') { | |
| hex_remaining = 2; | |
| } else { | |
| output.push_back(c); | |
| } | |
| escaping = false; | |
| continue; | |
| } | |
| if (c == '\\') { | |
| escaping = true; | |
| continue; | |
| } | |
| output.push_back(c); | |
| } | |
| return output; | |
| } | |
| struct llm_tokenizer_rwkv : llm_tokenizer { | |
| llm_tokenizer_rwkv(const llama_vocab & vocab) : llm_tokenizer() { | |
| // RWKV supports arbitrary byte tokens, but the vocab struct only supports string tokens. | |
| // For now, we decode the vocab here into the lookup we'll use for tokenization. | |
| // build trie | |
| for (unsigned int id = 0; id < vocab.id_to_token.size(); ++id) { | |
| const auto & token = vocab.id_to_token[id]; | |
| const auto data = llama_unescape_rwkv_token(token.text); | |
| token_matcher.insert((const char *) data.data(), data.size(), id); | |
| } | |
| } | |
| struct naive_trie token_matcher; | |
| }; | |
| struct llm_tokenizer_rwkv_session { | |
| llm_tokenizer_rwkv_session(const llama_vocab & vocab) : vocab(vocab), | |
| rwkv_tokenizer(static_cast<const llm_tokenizer_rwkv &>(*vocab.tokenizer)) {} | |
| void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) { | |
| uint32_t position = 0; | |
| while (position < text.size()) { | |
| const struct naive_trie * node = rwkv_tokenizer.token_matcher.traverse(text[position]); | |
| if (node == NULL) { | |
| // no matching token found, add unknown token | |
| output.push_back(vocab.special_unk_id); | |
| position += 1; | |
| continue; | |
| } | |
| // traverse the trie to find the longest matching token | |
| uint32_t token_id = 0; | |
| uint32_t token_length = 0; | |
| while (node != NULL) { | |
| if (node->has_value) { | |
| token_id = node->value; | |
| token_length = position + 1; | |
| } | |
| node = node->traverse(text[++position]); | |
| } | |
| // add the longest matching token | |
| output.push_back(token_id); | |
| position = token_length; | |
| } | |
| } | |
| private: | |
| const llama_vocab & vocab; | |
| const llm_tokenizer_rwkv & rwkv_tokenizer; | |
| }; | |
| void llama_vocab::init_tokenizer() { | |
| switch (type) { | |
| case LLAMA_VOCAB_TYPE_SPM: | |
| tokenizer = new llm_tokenizer_spm(*this); | |
| break; | |
| case LLAMA_VOCAB_TYPE_BPE: | |
| tokenizer = new llm_tokenizer_bpe(*this); | |
| break; | |
| case LLAMA_VOCAB_TYPE_WPM: | |
| tokenizer = new llm_tokenizer_wpm(*this); | |
| break; | |
| case LLAMA_VOCAB_TYPE_UGM: | |
| tokenizer = new llm_tokenizer_ugm(*this); | |
| break; | |
| case LLAMA_VOCAB_TYPE_RWKV: | |
| tokenizer = new llm_tokenizer_rwkv(*this); | |
| break; | |
| default: | |
| GGML_ABORT("unsupported vocab type"); | |
| } | |
| } | |
| // | |
| // (de-) tokenize | |
| // | |
| typedef enum FRAGMENT_BUFFER_VARIANT_TYPE { | |
| FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN, | |
| FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT | |
| } FRAGMENT_BUFFER_VARIANT_TYPE; | |
| struct fragment_buffer_variant { | |
| fragment_buffer_variant(llama_vocab::id _token) | |
| : | |
| type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN), | |
| token(_token), | |
| raw_text(_dummy), | |
| offset(0), | |
| length(0) {} | |
| fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length) | |
| : | |
| type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT), | |
| token((llama_vocab::id) - 1), | |
| raw_text(_raw_text), | |
| offset(_offset), | |
| length(_length){ | |
| GGML_ASSERT(_offset >= 0); | |
| GGML_ASSERT(_length >= 1); | |
| GGML_ASSERT(offset + length <= raw_text.length()); | |
| } | |
| const FRAGMENT_BUFFER_VARIANT_TYPE type; | |
| const llama_vocab::id token; | |
| const std::string _dummy; | |
| const std::string & raw_text; | |
| const uint64_t offset; | |
| const uint64_t length; | |
| }; | |
| // #define PRETOKENIZERDEBUG | |
| static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer, bool parse_special) { | |
| // for each special token | |
| for (const llama_vocab::id special_id : vocab.cache_special_tokens) { | |
| const auto & data = vocab.id_to_token[special_id]; | |
| const auto & special_token = data.text; | |
| if (!parse_special && (data.attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_UNKNOWN))) { | |
| // Ignore control and unknown tokens when parse_special == false | |
| continue; | |
| // User-defined tokens are still pre-tokenized before everything else | |
| // ref: https://github.com/huggingface/tokenizers/blob/fdd26ba9a3f0c133427aab0423888cbde91362d7/tokenizers/src/tokenizer/mod.rs#L726 | |
| // This is mostly relevant for neox-style tokenizers (mpt, olmo, stablelm, etc.) | |
| } | |
| // for each text fragment | |
| std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin(); | |
| while (it != buffer.end()) { | |
| auto & fragment = (*it); | |
| // if a fragment is text ( not yet processed ) | |
| if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { | |
| const auto & raw_text = fragment.raw_text; | |
| auto raw_text_base_offset = fragment.offset; | |
| auto raw_text_base_length = fragment.length; | |
| // loop over the text | |
| while (true) { | |
| // find the first occurrence of a given special token in this fragment | |
| // passing offset argument only limit the "search area" but match coordinates | |
| // are still relative to the source full raw_text | |
| auto match = raw_text.find(special_token, raw_text_base_offset); | |
| // no occurrences found, stop processing this fragment for a given special token | |
| if (match == std::string::npos) break; | |
| // check if match is within bounds of offset <-> length | |
| if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break; | |
| LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); | |
| auto source = std::distance(buffer.begin(), it); | |
| // if match is further than base offset | |
| // then we have some text to the left of it | |
| if (match > raw_text_base_offset) { | |
| // left | |
| const int64_t left_reminder_offset = raw_text_base_offset + 0; | |
| int64_t left_reminder_length = match - raw_text_base_offset; | |
| if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) { | |
| while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) { | |
| left_reminder_length--; | |
| } | |
| } | |
| if (left_reminder_length > 0) { | |
| buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length); | |
| it++; | |
| } | |
| LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str()); | |
| } | |
| // special token | |
| buffer.emplace_after(it, special_id); | |
| it++; | |
| // right | |
| if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) { | |
| int64_t right_reminder_offset = match + special_token.length(); | |
| int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length()); | |
| if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) { | |
| while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) { | |
| right_reminder_offset++; | |
| right_reminder_length--; | |
| } | |
| } | |
| if (right_reminder_length > 0) { | |
| buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length); | |
| it++; | |
| } | |
| LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str()); | |
| if (source == 0) { | |
| buffer.erase_after(buffer.before_begin()); | |
| } else { | |
| buffer.erase_after(std::next(buffer.begin(), (source-1))); | |
| } | |
| // repeat for the right side | |
| raw_text_base_offset = right_reminder_offset; | |
| raw_text_base_length = right_reminder_length; | |
| LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); | |
| } else { | |
| if (source == 0) { | |
| buffer.erase_after(buffer.before_begin()); | |
| } else { | |
| buffer.erase_after(std::next(buffer.begin(), (source-1))); | |
| } | |
| break; | |
| } | |
| } | |
| } | |
| it++; | |
| } | |
| } | |
| } | |
| std::vector<llama_vocab::id> llama_tokenize_internal( | |
| const llama_vocab & vocab, | |
| std::string raw_text, | |
| bool add_special, | |
| bool parse_special) { | |
| GGML_ASSERT(vocab.tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first."); | |
| std::vector<llama_vocab::id> output; | |
| std::forward_list<fragment_buffer_variant> fragment_buffer; | |
| if (!raw_text.empty()) { | |
| fragment_buffer.emplace_front(raw_text, 0, raw_text.length()); | |
| tokenizer_st_partition(vocab, fragment_buffer, parse_special); | |
| } | |
| switch (vocab.type) { | |
| case LLAMA_VOCAB_TYPE_SPM: | |
| { | |
| // OG tokenizer behavior: | |
| // | |
| // tokenizer.encode('', add_special_tokens=True) returns [1] | |
| // tokenizer.encode('', add_special_tokens=False) returns [] | |
| bool is_prev_special = true; // prefix with space if first token | |
| if (add_special && vocab.tokenizer_add_bos) { | |
| GGML_ASSERT(vocab.special_bos_id != -1); | |
| output.push_back(vocab.special_bos_id); | |
| is_prev_special = true; | |
| } | |
| for (const auto & fragment : fragment_buffer) { | |
| if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { | |
| auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); | |
| // prefix with space if previous is special | |
| if (vocab.tokenizer_add_space_prefix && is_prev_special) { | |
| raw_text = " " + raw_text; | |
| } | |
| LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); | |
| llama_escape_whitespace(raw_text); | |
| llm_tokenizer_spm_session session(vocab); | |
| session.tokenize(raw_text, output); | |
| is_prev_special = false; | |
| } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) | |
| output.push_back(fragment.token); | |
| is_prev_special = true; | |
| } | |
| } | |
| if (add_special && vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) { | |
| LLAMA_LOG_WARN( | |
| "%s: Added a BOS token to the prompt as specified by the model but the prompt " | |
| "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. " | |
| "Are you sure this is what you want?\n", __FUNCTION__); | |
| } | |
| if (add_special && vocab.tokenizer_add_eos) { | |
| GGML_ASSERT(vocab.special_eos_id != -1); | |
| output.push_back(vocab.special_eos_id); | |
| } | |
| } break; | |
| case LLAMA_VOCAB_TYPE_BPE: | |
| { | |
| llm_tokenizer_bpe_session session(vocab); | |
| // it calls some other methods that are not exist in llm_tokenizer, | |
| // here just cast it to bpe tokenizer object | |
| if (add_special) { | |
| session.append_bos(output); | |
| } | |
| for (const auto & fragment : fragment_buffer) { | |
| if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { | |
| auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); | |
| LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); | |
| session.tokenize(raw_text, output); | |
| } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) | |
| session.append(fragment.token, output); | |
| } | |
| } | |
| if (add_special) { | |
| session.append_eos(output); | |
| session.check_double_bos_eos(output); | |
| } | |
| } break; | |
| case LLAMA_VOCAB_TYPE_WPM: | |
| { | |
| if (add_special) { | |
| GGML_ASSERT(vocab.special_cls_id != -1); | |
| output.push_back(vocab.special_cls_id); | |
| } | |
| llm_tokenizer_wpm_session session(vocab); | |
| for (const auto & fragment : fragment_buffer) { | |
| if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { | |
| auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); | |
| LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); | |
| session.tokenize(raw_text, output); | |
| } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) | |
| output.push_back(fragment.token); | |
| } | |
| } | |
| if (add_special) { | |
| GGML_ASSERT(vocab.special_sep_id != -1); | |
| output.push_back(vocab.special_sep_id); | |
| } | |
| } break; | |
| case LLAMA_VOCAB_TYPE_UGM: | |
| { | |
| if (add_special && vocab.tokenizer_add_bos) { | |
| GGML_ASSERT(vocab.special_bos_id != -1); | |
| output.push_back(vocab.special_bos_id); | |
| } | |
| llm_tokenizer_ugm_session session(vocab); | |
| for (const auto & fragment : fragment_buffer) { | |
| if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { | |
| auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); | |
| LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); | |
| session.tokenize(raw_text, output); | |
| } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) | |
| output.push_back(fragment.token); | |
| } | |
| } | |
| if (add_special && vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) { | |
| LLAMA_LOG_WARN( | |
| "%s: Added a BOS token to the prompt as specified by the model but the prompt " | |
| "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. " | |
| "Are you sure this is what you want?\n", __FUNCTION__); | |
| } | |
| if (add_special && vocab.tokenizer_add_eos) { | |
| GGML_ASSERT(vocab.special_eos_id != -1); | |
| output.push_back(vocab.special_eos_id); | |
| } | |
| } break; | |
| case LLAMA_VOCAB_TYPE_RWKV: | |
| { | |
| llm_tokenizer_rwkv_session session(vocab); | |
| for (const auto & fragment : fragment_buffer) { | |
| if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { | |
| auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); | |
| LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); | |
| session.tokenize(raw_text, output); | |
| } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) | |
| output.push_back(fragment.token); | |
| } | |
| } | |
| } break; | |
| case LLAMA_VOCAB_TYPE_NONE: | |
| GGML_ABORT("fatal error"); | |
| } | |
| return output; | |
| } | |
| llama_token llama_byte_to_token_impl(const llama_vocab & vocab, uint8_t ch) { | |
| GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE); | |
| static const char * hex = "0123456789ABCDEF"; | |
| switch (llama_vocab_get_type(vocab)) { | |
| case LLAMA_VOCAB_TYPE_SPM: | |
| case LLAMA_VOCAB_TYPE_UGM: { | |
| const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 }; | |
| auto token = vocab.token_to_id.find(buf); | |
| if (token != vocab.token_to_id.end()) { | |
| return (*token).second; | |
| } | |
| // Try to fall back to just the byte as a string | |
| const char buf2[2] = { (char)ch, 0 }; | |
| return vocab.token_to_id.at(buf2); | |
| } | |
| case LLAMA_VOCAB_TYPE_WPM: | |
| case LLAMA_VOCAB_TYPE_BPE: { | |
| return vocab.token_to_id.at(unicode_byte_to_utf8(ch)); | |
| } | |
| default: | |
| GGML_ABORT("fatal error"); | |
| } | |
| } | |
| const char * llama_token_get_text_impl(const struct llama_vocab & vocab, llama_token token) { | |
| GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); | |
| return vocab.id_to_token[token].text.c_str(); | |
| } | |
| float llama_token_get_score_impl(const struct llama_vocab & vocab, llama_token token) { | |
| GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); | |
| return vocab.id_to_token[token].score; | |
| } | |
| llama_token_attr llama_token_get_attr_impl(const struct llama_vocab & vocab, llama_token token) { | |
| GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); | |
| return vocab.id_to_token[token].attr; | |
| } | |
| bool llama_token_is_eog_impl(const struct llama_vocab & vocab, llama_token token) { | |
| return token != -1 && vocab.special_eog_ids.count(token) > 0; | |
| } | |
| bool llama_token_is_control_impl(const struct llama_vocab & vocab, llama_token token) { | |
| return llama_is_control_token(vocab, token); | |
| } | |
| llama_token llama_token_bos_impl(const struct llama_vocab & vocab) { | |
| return vocab.special_bos_id; | |
| } | |
| llama_token llama_token_eos_impl(const struct llama_vocab & vocab) { | |
| return vocab.special_eos_id; | |
| } | |
| llama_token llama_token_eot_impl(const struct llama_vocab & vocab) { | |
| return vocab.special_eot_id; | |
| } | |
| llama_token llama_token_eom_impl(const struct llama_vocab & vocab) { | |
| return vocab.special_eom_id; | |
| } | |
| llama_token llama_token_cls_impl(const struct llama_vocab & vocab) { | |
| return vocab.special_cls_id; | |
| } | |
| llama_token llama_token_sep_impl(const struct llama_vocab & vocab) { | |
| return vocab.special_sep_id; | |
| } | |
| llama_token llama_token_nl_impl(const struct llama_vocab & vocab) { | |
| return vocab.linefeed_id; | |
| } | |
| llama_token llama_token_pad_impl(const struct llama_vocab & vocab) { | |
| return vocab.special_pad_id; | |
| } | |
| bool llama_add_bos_token_impl(const struct llama_vocab & vocab) { | |
| return vocab.tokenizer_add_bos; | |
| } | |
| bool llama_add_eos_token_impl(const struct llama_vocab & vocab) { | |
| return vocab.tokenizer_add_eos; | |
| } | |
| llama_token llama_token_prefix_impl(const struct llama_vocab & vocab) { | |
| return vocab.special_fim_pre_id; | |
| } | |
| llama_token llama_token_middle_impl(const struct llama_vocab & vocab) { | |
| return vocab.special_fim_mid_id; | |
| } | |
| llama_token llama_token_suffix_impl(const struct llama_vocab & vocab) { | |
| return vocab.special_fim_suf_id; | |
| } | |
| llama_token llama_token_fim_pre_impl(const struct llama_vocab & vocab) { | |
| return vocab.special_fim_pre_id; | |
| } | |
| llama_token llama_token_fim_suf_impl(const struct llama_vocab & vocab) { | |
| return vocab.special_fim_suf_id; | |
| } | |
| llama_token llama_token_fim_mid_impl(const struct llama_vocab & vocab) { | |
| return vocab.special_fim_mid_id; | |
| } | |
| llama_token llama_token_fim_pad_impl(const struct llama_vocab & vocab) { | |
| return vocab.special_fim_pad_id; | |
| } | |
| llama_token llama_token_fim_rep_impl(const struct llama_vocab & vocab) { | |
| return vocab.special_fim_rep_id; | |
| } | |
| llama_token llama_token_fim_sep_impl(const struct llama_vocab & vocab) { | |
| return vocab.special_fim_sep_id; | |
| } | |
| int32_t llama_tokenize_impl( | |
| const struct llama_vocab & vocab, | |
| const char * text, | |
| int32_t text_len, | |
| llama_token * tokens, | |
| int32_t n_tokens_max, | |
| bool add_special, | |
| bool parse_special) { | |
| auto res = llama_tokenize_internal(vocab, std::string(text, text_len), add_special, parse_special); | |
| if (n_tokens_max < (int) res.size()) { | |
| // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__); | |
| return -((int) res.size()); | |
| } | |
| for (size_t i = 0; i < res.size(); i++) { | |
| tokens[i] = res[i]; | |
| } | |
| return res.size(); | |
| } | |
| static std::string llama_decode_text(const std::string & text) { | |
| std::string decoded_text; | |
| const auto cpts = unicode_cpts_from_utf8(text); | |
| for (const auto cpt : cpts) { | |
| const auto utf8 = unicode_cpt_to_utf8(cpt); | |
| try { | |
| decoded_text += unicode_utf8_to_byte(utf8); | |
| } catch (const std::out_of_range & /*e*/) { | |
| decoded_text += "[UNK_BYTE_0x"; | |
| for (const auto c : utf8) { | |
| decoded_text += format("%02x", (uint8_t) c); | |
| } | |
| decoded_text += text + "]"; | |
| } | |
| } | |
| return decoded_text; | |
| } | |
| // does not write null-terminator to buf | |
| int32_t llama_token_to_piece_impl(const struct llama_vocab & vocab, llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) { | |
| // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843 | |
| static const int attr_special = LLAMA_TOKEN_ATTR_UNKNOWN | LLAMA_TOKEN_ATTR_CONTROL; | |
| const llama_token_attr attr = llama_token_get_attr_impl(vocab, token); | |
| if (!special && (attr & attr_special)) { | |
| return 0; | |
| } | |
| // copy piece chars to output text buffer | |
| // skip up to 'lstrip' leading spaces before copying | |
| auto _try_copy = [=] (const char * token, size_t size) -> int32_t { | |
| for (int32_t i = 0; i < lstrip && size && *token == ' '; ++i) { | |
| token++; | |
| size--; | |
| } | |
| if (length < (int32_t)size) { | |
| return -(int32_t) size; | |
| } | |
| memcpy(buf, token, size); | |
| return (int32_t) size; | |
| }; | |
| // if we have a cache - use it | |
| { | |
| const auto & cache = vocab.cache_token_to_piece; | |
| if (!cache.empty()) { | |
| const auto & result = cache.at(token); | |
| return _try_copy(result.data(), result.size()); | |
| } | |
| } | |
| if (0 <= token && token < (int32_t) vocab.id_to_token.size()) { | |
| const std::string & token_text = vocab.id_to_token[token].text; | |
| switch (llama_vocab_get_type(vocab)) { | |
| case LLAMA_VOCAB_TYPE_WPM: | |
| case LLAMA_VOCAB_TYPE_SPM: | |
| case LLAMA_VOCAB_TYPE_UGM: { | |
| // NOTE: we accept all unsupported token types, | |
| // suppressing them like CONTROL tokens. | |
| if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) { | |
| return _try_copy(token_text.data(), token_text.size()); | |
| } | |
| if (attr & LLAMA_TOKEN_ATTR_NORMAL) { | |
| std::string result = token_text; | |
| llama_unescape_whitespace(result); | |
| return _try_copy(result.data(), result.size()); | |
| } | |
| if (attr & LLAMA_TOKEN_ATTR_BYTE) { | |
| char byte = (char) llama_token_to_byte(vocab, token); | |
| return _try_copy((char*) &byte, 1); | |
| } | |
| break; | |
| } | |
| case LLAMA_VOCAB_TYPE_BPE: { | |
| // NOTE: we accept all unsupported token types, | |
| // suppressing them like CONTROL tokens. | |
| if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) { | |
| return _try_copy(token_text.data(), token_text.size()); | |
| } | |
| if (attr & LLAMA_TOKEN_ATTR_NORMAL) { | |
| std::string result = llama_decode_text(token_text); | |
| return _try_copy(result.data(), result.size()); | |
| } | |
| break; | |
| } | |
| case LLAMA_VOCAB_TYPE_RWKV: { | |
| std::vector<uint8_t> result = llama_unescape_rwkv_token(token_text); | |
| // If we don't have enough space, return an error | |
| if (result.size() > (size_t)length) { | |
| return -(int)result.size(); | |
| } | |
| memcpy(buf, result.data(), result.size()); | |
| return (int)result.size(); | |
| } | |
| default: | |
| GGML_ABORT("fatal error"); | |
| } | |
| } | |
| return 0; | |
| } | |
| int32_t llama_detokenize_impl( | |
| const struct llama_vocab & vocab, | |
| const llama_token * tokens, | |
| int32_t n_tokens, | |
| char * text, | |
| int32_t text_len_max, | |
| bool remove_special, | |
| bool unparse_special) { | |
| GGML_ASSERT(vocab.tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first."); | |
| int32_t avail = text_len_max; | |
| int32_t total = 0; | |
| // remove the leading space | |
| bool remove_space = vocab.tokenizer_add_space_prefix; | |
| if (remove_special && vocab.tokenizer_add_bos) { | |
| if (n_tokens > 0 && tokens[0] == vocab.special_bos_id) { | |
| remove_space = false; | |
| n_tokens--; | |
| tokens++; | |
| } | |
| } | |
| if (remove_special && vocab.tokenizer_add_eos) { | |
| if (n_tokens > 0 && tokens[n_tokens-1] == vocab.special_eos_id) { | |
| n_tokens--; | |
| } | |
| } | |
| for (int32_t i = 0; i < n_tokens; ++i) { | |
| GGML_ASSERT(avail >= 0); | |
| int32_t n_chars = llama_token_to_piece_impl(vocab, tokens[i], text, avail, remove_space, unparse_special); | |
| remove_space = false; | |
| if (n_chars < 0) { | |
| avail = 0; | |
| total -= n_chars; | |
| } else if (n_chars > 0) { | |
| avail -= n_chars; | |
| text += n_chars; | |
| total += n_chars; | |
| } | |
| } | |
| if (total > text_len_max) { | |
| return -total; | |
| } | |
| if (vocab.tokenizer_clean_spaces) { | |
| text -= total; // restart text | |
| // first pass: characters ?!., //TODO: where do these characters come from? | |
| const int32_t total1 = total; | |
| total = total ? 1 : 0; | |
| for (int32_t i = 1; i < total1; ++i) { | |
| const char x = text[i]; | |
| if (text[i - 1] == ' ') { | |
| if (x == '?' || x == '!' || x == '.' || x == ',') { // " ?", " !", " .", " ," | |
| total--; // remove space | |
| } | |
| } | |
| text[total++] = x; | |
| } | |
| // second pass: strip single apostrophe between spaces | |
| const int32_t total2 = total; | |
| total = total ? 1 : 0; | |
| for (int32_t i = 1; i < total2; ++i) { | |
| const char x = text[i]; | |
| if (x == '\'' && i + 1 < total2 && text[i - 1] == ' ' && text[i + 1] == ' ') { // " ' " | |
| total--; // remove prev space | |
| text[++i] = '\0'; // remove next space | |
| } | |
| text[total++] = x; | |
| } | |
| // third pass: apostrophe contractions //NOTE: this makes sense? | |
| const int32_t total3 = total; | |
| total = total ? 1 : 0; | |
| for (int32_t i = 1; i < total3; ++i) { | |
| const char x = text[i]; | |
| if (text[i - 1] == ' ') { | |
| if (x == '\'' && i + 1 < total3) { | |
| const char x1 = text[i + 1]; | |
| if (x1 == 't' || x1 == 'd') { // " 't", " 'd" | |
| //total--; // remove space | |
| } else if (x1 == 's' || x1 == 'm') { // " 's", " 'm" | |
| total--; // remove space | |
| } else if (i + 2 < total3) { | |
| const char x2 = text[i + 2]; | |
| if ((x1 == 'l' && x2 == 'l')) { // " 'll" | |
| //total--; // remove space | |
| } else if ((x1 == 'r' && x2 == 'e') || (x1 == 'v' && x2 == 'e')) { // " 're", " 've" | |
| total--; // remove space | |
| } else { | |
| //total--; // remove space | |
| } | |
| } else { | |
| //total--; // remove space | |
| } | |
| } | |
| } | |
| text[total++] = x; | |
| } | |
| } | |
| return total <= text_len_max ? total : -total; | |
| } | |
| std::string llama_detokenize(const struct llama_vocab & vocab, const std::vector<llama_token> & tokens, bool special) { | |
| std::string text; | |
| text.resize(std::max(text.capacity(), tokens.size())); | |
| int32_t n_chars = llama_detokenize_impl(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special); | |
| if (n_chars < 0) { | |
| text.resize(-n_chars); | |
| n_chars = llama_detokenize_impl(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special); | |
| GGML_ASSERT(n_chars <= (int32_t)text.size()); // whitespace trimming is performed after per-token detokenization | |
| } | |
| text.resize(n_chars); | |
| // NOTE: the original tokenizer decodes bytes after collecting the pieces. | |
| return text; | |
| } | |