Spaces:
Runtime error
Runtime error
| namespace { | |
| // Forced unrolling | |
| template <int n> | |
| struct Unroll { | |
| template <typename Func, typename... Args> | |
| ALWAYS_INLINE void operator()(const Func& f, Args... args) const { | |
| Unroll<n - 1>{}(f, args...); | |
| f(std::integral_constant<int, n - 1>{}, args...); | |
| } | |
| }; | |
| template <> | |
| struct Unroll<1> { | |
| template <typename Func, typename... Args> | |
| ALWAYS_INLINE void operator()(const Func& f, Args... args) const { | |
| f(std::integral_constant<int, 0>{}, args...); | |
| } | |
| }; | |
| // type traits | |
| template <typename T> struct PackedTypes {}; | |
| template <> struct PackedTypes<block_q4_0> { using type = int8_t; }; | |
| template <> struct PackedTypes<block_q4_1> { using type = uint8_t; }; | |
| template <> struct PackedTypes<block_q8_0> { using type = int8_t; }; | |
| template <typename T> using packed_B_type = typename PackedTypes<T>::type; | |
| template <typename T> | |
| struct do_compensate : std::integral_constant<bool, | |
| std::is_same<T, block_q8_0>::value> {}; | |
| template <typename T> | |
| struct do_unpack : std::integral_constant<bool, | |
| std::is_same<T, block_q4_0>::value || | |
| std::is_same<T, block_q4_1>::value> {}; | |
| template <typename T> | |
| struct is_type_qkk : std::integral_constant<bool, | |
| std::is_same<T, block_q4_K>::value || | |
| std::is_same<T, block_q5_K>::value || | |
| std::is_same<T, block_q6_K>::value || | |
| std::is_same<T, block_iq4_xs>::value> {}; | |
| // define amx tile config data structure | |
| struct tile_config_t{ | |
| uint8_t palette_id = 0; | |
| uint8_t start_row = 0; | |
| uint8_t reserved_0[14] = {0}; | |
| uint16_t colsb[16] = {0}; | |
| uint8_t rows[16] = {0}; | |
| }; | |
| // Notes: amx tile config | |
| // | |
| // Typically, TMUL calculates A and B of size 16 x 64 containing INT8 values, | |
| // and accumulate the result to a 16 x 16 matrix C containing INT32 values, | |
| // | |
| // As many GGUF quantized types as `block_size` of 32, so a 16-16-32 config is used | |
| // instead of the normally used 16-16-64 config. | |
| // | |
| // Block A: {16, 32}, dtype = int8_t | |
| // Block B: {16, 32}, dtype = uint8_t/int8_t | |
| // Block C: {16, 16}, dtype = int32_t | |
| // | |
| // Block B needs to be prepacked to vnni format before feeding into TMUL: | |
| // packed_B: from {n, k} to {k/vnni_blk, n, vnni_blck}, viewed in 2d, we get {8, 64} | |
| // | |
| // Therefore, we get tileconfig: | |
| // A B C | |
| // rows 16 8 16 | |
| // colsb 32 64 16 | |
| // | |
| // For tile distribution, follow a 2-2-4 pattern, e.g. A used TMM2-TMM3, B used TMM0-TMM1, | |
| // C used TMM4-TMM7: | |
| // B TMM0 B TMM1 | |
| // A TMM2 C TMM4 C TMM6 | |
| // A TMM3 C TMM5 C TMM7 | |
| // | |
| // Each `amx` kernel handles 4 blocks at a time: 2MB * 2NB, when m < 2 * BLOCK_M, unpack A | |
| // will be needed. | |
| // | |
| // Here another commonly used pattern 1-3-3 is skipped, as it is mostly used when m <=16; | |
| // and the sinlge batch gemm (m=1) has a special fast path with `avx512-vnni`. | |
| // | |
| // ref: https://www.intel.com/content/www/us/en/developer/articles/code-sample/ | |
| // advanced-matrix-extensions-intrinsics-functions.html | |
| // | |
| void ggml_tile_config_init(void) { | |
| static thread_local bool is_first_time = true; | |
| if (!is_first_time) { | |
| return; | |
| } | |
| static thread_local tile_config_t tc; | |
| tile_config_t current_tc; | |
| _tile_storeconfig(¤t_tc); | |
| // load only when config changes | |
| if (tc.palette_id == 0 || (memcmp(¤t_tc.colsb, &tc.colsb, sizeof(uint16_t) * 8) != 0 && | |
| memcmp(¤t_tc.rows, &tc.rows, sizeof(uint8_t) * 8) != 0)) { | |
| tc.palette_id = 1; | |
| tc.start_row = 0; | |
| TC_CONFIG_TILE(TMM0, 8, 64); | |
| TC_CONFIG_TILE(TMM1, 8, 64); | |
| TC_CONFIG_TILE(TMM2, 16, 32); | |
| TC_CONFIG_TILE(TMM3, 16, 32); | |
| TC_CONFIG_TILE(TMM4, 16, 64); | |
| TC_CONFIG_TILE(TMM5, 16, 64); | |
| TC_CONFIG_TILE(TMM6, 16, 64); | |
| TC_CONFIG_TILE(TMM7, 16, 64); | |
| _tile_loadconfig(&tc); | |
| } | |
| is_first_time = false; | |
| } | |
| // we need an extra 16 * 4B (TILE_N * int32_t) for each NB/KB block for compensation. | |
| // See the notes `s8s8 igemm compensation in avx512-vnni` for detail. | |
| template <typename TB> | |
| int get_tile_size() { | |
| int tile_size = TILE_N * sizeof(TB); | |
| if (do_compensate<TB>::value) { | |
| tile_size += TILE_N * sizeof(int32_t); | |
| } | |
| if (std::is_same<TB, block_q4_K>::value || | |
| std::is_same<TB, block_q5_K>::value) { | |
| tile_size += TILE_N * 4; | |
| } | |
| if (std::is_same<TB, block_iq4_xs>::value) { | |
| tile_size += TILE_N * 2; | |
| } | |
| return tile_size; | |
| } | |
| template <typename TB, int BLOCK_K> | |
| int get_row_size(int K) { | |
| int KB = K / BLOCK_K; | |
| int row_size = KB * sizeof(TB); | |
| if (do_compensate<TB>::value) { | |
| row_size += KB * sizeof(int32_t); | |
| } | |
| if (std::is_same<TB, block_q4_K>::value || | |
| std::is_same<TB, block_q5_K>::value) { | |
| row_size += KB * 4; | |
| } | |
| if (std::is_same<TB, block_iq4_xs>::value) { | |
| row_size += KB * 2; | |
| } | |
| return row_size; | |
| } | |
| // vectorized dtype conversion | |
| inline float FP16_TO_FP32(ggml_half val) { | |
| __m256i v = _mm256_setr_epi16( | |
| val, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); | |
| __m512 o = _mm512_cvtph_ps(v); | |
| return _mm512_cvtss_f32(o); | |
| } | |
| inline __m512 FP16_TO_FP32_VEC(ggml_half val) { | |
| __m256i v = _mm256_set1_epi16(val); | |
| return _mm512_cvtph_ps(v); | |
| } | |
| // horizontal reduce | |
| inline float _mm512_reduce_max_ps(const __m512 x) { | |
| __m512 v = x; | |
| __m512 v1 = _mm512_shuffle_f32x4(v, v, 0x4E); | |
| v = _mm512_max_ps(v, v1); | |
| v1 = _mm512_shuffle_f32x4(v, v, 0xB1); | |
| v = _mm512_max_ps(v, v1); | |
| v1 = _mm512_shuffle_ps(v, v, 0x4E); | |
| v = _mm512_max_ps(v, v1); | |
| v1 = _mm512_shuffle_ps(v, v, 0xB1); | |
| v = _mm512_max_ps(v, v1); | |
| return _mm512_cvtss_f32(v); | |
| } | |
| // transpose utils | |
| inline void transpose_8x8_32bit(__m256i * v, __m256i * v1) { | |
| // unpacking and 32-bit elements | |
| v1[0] = _mm256_unpacklo_epi32(v[0], v[1]); | |
| v1[1] = _mm256_unpackhi_epi32(v[0], v[1]); | |
| v1[2] = _mm256_unpacklo_epi32(v[2], v[3]); | |
| v1[3] = _mm256_unpackhi_epi32(v[2], v[3]); | |
| v1[4] = _mm256_unpacklo_epi32(v[4], v[5]); | |
| v1[5] = _mm256_unpackhi_epi32(v[4], v[5]); | |
| v1[6] = _mm256_unpacklo_epi32(v[6], v[7]); | |
| v1[7] = _mm256_unpackhi_epi32(v[6], v[7]); | |
| // shuffling the 32-bit elements | |
| v[0] = SHUFFLE_EPI32(v1[0], v1[2], 0x44); | |
| v[1] = SHUFFLE_EPI32(v1[0], v1[2], 0xee); | |
| v[2] = SHUFFLE_EPI32(v1[4], v1[6], 0x44); | |
| v[3] = SHUFFLE_EPI32(v1[4], v1[6], 0xee); | |
| v[4] = SHUFFLE_EPI32(v1[1], v1[3], 0x44); | |
| v[5] = SHUFFLE_EPI32(v1[1], v1[3], 0xee); | |
| v[6] = SHUFFLE_EPI32(v1[5], v1[7], 0x44); | |
| v[7] = SHUFFLE_EPI32(v1[5], v1[7], 0xee); | |
| // shuffling 128-bit elements | |
| v1[0] = _mm256_permute2f128_si256(v[2], v[0], 0x02); | |
| v1[1] = _mm256_permute2f128_si256(v[3], v[1], 0x02); | |
| v1[2] = _mm256_permute2f128_si256(v[6], v[4], 0x02); | |
| v1[3] = _mm256_permute2f128_si256(v[7], v[5], 0x02); | |
| v1[4] = _mm256_permute2f128_si256(v[2], v[0], 0x13); | |
| v1[5] = _mm256_permute2f128_si256(v[3], v[1], 0x13); | |
| v1[6] = _mm256_permute2f128_si256(v[6], v[4], 0x13); | |
| v1[7] = _mm256_permute2f128_si256(v[7], v[5], 0x13); | |
| } | |
| inline void transpose_16x4_32bit(__m512i * r, __m512i * d) { | |
| static const __m512i index1 = _mm512_set_epi32( | |
| 0x0f, 0x0b, 0x07, 0x03, | |
| 0x0e, 0x0a, 0x06, 0x02, | |
| 0x0d, 0x09, 0x05, 0x01, | |
| 0x0c, 0x08, 0x04, 0x00); | |
| d[0] = _mm512_permutexvar_epi32(index1, r[0]); | |
| d[1] = _mm512_permutexvar_epi32(index1, r[1]); | |
| d[2] = _mm512_permutexvar_epi32(index1, r[2]); | |
| d[3] = _mm512_permutexvar_epi32(index1, r[3]); | |
| r[0] = _mm512_shuffle_i32x4(d[0], d[1], 0x44); | |
| r[1] = _mm512_shuffle_i32x4(d[0], d[1], 0xee); | |
| r[2] = _mm512_shuffle_i32x4(d[2], d[3], 0x44); | |
| r[3] = _mm512_shuffle_i32x4(d[2], d[3], 0xee); | |
| d[0] = _mm512_shuffle_i32x4(r[0], r[2], 0x88); | |
| d[1] = _mm512_shuffle_i32x4(r[0], r[2], 0xdd); | |
| d[2] = _mm512_shuffle_i32x4(r[1], r[3], 0x88); | |
| d[3] = _mm512_shuffle_i32x4(r[1], r[3], 0xdd); | |
| } | |
| inline void transpose_16x16_32bit(__m512i * v) { | |
| __m512i v1[16]; | |
| v1[0] = _mm512_unpacklo_epi32(v[0], v[1]); | |
| v1[1] = _mm512_unpackhi_epi32(v[0], v[1]); | |
| v1[2] = _mm512_unpacklo_epi32(v[2], v[3]); | |
| v1[3] = _mm512_unpackhi_epi32(v[2], v[3]); | |
| v1[4] = _mm512_unpacklo_epi32(v[4], v[5]); | |
| v1[5] = _mm512_unpackhi_epi32(v[4], v[5]); | |
| v1[6] = _mm512_unpacklo_epi32(v[6], v[7]); | |
| v1[7] = _mm512_unpackhi_epi32(v[6], v[7]); | |
| v1[8] = _mm512_unpacklo_epi32(v[8], v[9]); | |
| v1[9] = _mm512_unpackhi_epi32(v[8], v[9]); | |
| v1[10] = _mm512_unpacklo_epi32(v[10], v[11]); | |
| v1[11] = _mm512_unpackhi_epi32(v[10], v[11]); | |
| v1[12] = _mm512_unpacklo_epi32(v[12], v[13]); | |
| v1[13] = _mm512_unpackhi_epi32(v[12], v[13]); | |
| v1[14] = _mm512_unpacklo_epi32(v[14], v[15]); | |
| v1[15] = _mm512_unpackhi_epi32(v[14], v[15]); | |
| v[0] = _mm512_unpacklo_epi64(v1[0], v1[2]); | |
| v[1] = _mm512_unpackhi_epi64(v1[0], v1[2]); | |
| v[2] = _mm512_unpacklo_epi64(v1[1], v1[3]); | |
| v[3] = _mm512_unpackhi_epi64(v1[1], v1[3]); | |
| v[4] = _mm512_unpacklo_epi64(v1[4], v1[6]); | |
| v[5] = _mm512_unpackhi_epi64(v1[4], v1[6]); | |
| v[6] = _mm512_unpacklo_epi64(v1[5], v1[7]); | |
| v[7] = _mm512_unpackhi_epi64(v1[5], v1[7]); | |
| v[8] = _mm512_unpacklo_epi64(v1[8], v1[10]); | |
| v[9] = _mm512_unpackhi_epi64(v1[8], v1[10]); | |
| v[10] = _mm512_unpacklo_epi64(v1[9], v1[11]); | |
| v[11] = _mm512_unpackhi_epi64(v1[9], v1[11]); | |
| v[12] = _mm512_unpacklo_epi64(v1[12], v1[14]); | |
| v[13] = _mm512_unpackhi_epi64(v1[12], v1[14]); | |
| v[14] = _mm512_unpacklo_epi64(v1[13], v1[15]); | |
| v[15] = _mm512_unpackhi_epi64(v1[13], v1[15]); | |
| v1[0] = _mm512_shuffle_i32x4(v[0], v[4], 0x88); | |
| v1[1] = _mm512_shuffle_i32x4(v[1], v[5], 0x88); | |
| v1[2] = _mm512_shuffle_i32x4(v[2], v[6], 0x88); | |
| v1[3] = _mm512_shuffle_i32x4(v[3], v[7], 0x88); | |
| v1[4] = _mm512_shuffle_i32x4(v[0], v[4], 0xdd); | |
| v1[5] = _mm512_shuffle_i32x4(v[1], v[5], 0xdd); | |
| v1[6] = _mm512_shuffle_i32x4(v[2], v[6], 0xdd); | |
| v1[7] = _mm512_shuffle_i32x4(v[3], v[7], 0xdd); | |
| v1[8] = _mm512_shuffle_i32x4(v[8], v[12], 0x88); | |
| v1[9] = _mm512_shuffle_i32x4(v[9], v[13], 0x88); | |
| v1[10] = _mm512_shuffle_i32x4(v[10], v[14], 0x88); | |
| v1[11] = _mm512_shuffle_i32x4(v[11], v[15], 0x88); | |
| v1[12] = _mm512_shuffle_i32x4(v[8], v[12], 0xdd); | |
| v1[13] = _mm512_shuffle_i32x4(v[9], v[13], 0xdd); | |
| v1[14] = _mm512_shuffle_i32x4(v[10], v[14], 0xdd); | |
| v1[15] = _mm512_shuffle_i32x4(v[11], v[15], 0xdd); | |
| v[0] = _mm512_shuffle_i32x4(v1[0], v1[8], 0x88); | |
| v[1] = _mm512_shuffle_i32x4(v1[1], v1[9], 0x88); | |
| v[2] = _mm512_shuffle_i32x4(v1[2], v1[10], 0x88); | |
| v[3] = _mm512_shuffle_i32x4(v1[3], v1[11], 0x88); | |
| v[4] = _mm512_shuffle_i32x4(v1[4], v1[12], 0x88); | |
| v[5] = _mm512_shuffle_i32x4(v1[5], v1[13], 0x88); | |
| v[6] = _mm512_shuffle_i32x4(v1[6], v1[14], 0x88); | |
| v[7] = _mm512_shuffle_i32x4(v1[7], v1[15], 0x88); | |
| v[8] = _mm512_shuffle_i32x4(v1[0], v1[8], 0xdd); | |
| v[9] = _mm512_shuffle_i32x4(v1[1], v1[9], 0xdd); | |
| v[10] = _mm512_shuffle_i32x4(v1[2], v1[10], 0xdd); | |
| v[11] = _mm512_shuffle_i32x4(v1[3], v1[11], 0xdd); | |
| v[12] = _mm512_shuffle_i32x4(v1[4], v1[12], 0xdd); | |
| v[13] = _mm512_shuffle_i32x4(v1[5], v1[13], 0xdd); | |
| v[14] = _mm512_shuffle_i32x4(v1[6], v1[14], 0xdd); | |
| v[15] = _mm512_shuffle_i32x4(v1[7], v1[15], 0xdd); | |
| } | |
| void quantize_row_q8_K_vnni(const float * RESTRICT x, void * RESTRICT vy, int64_t k) { | |
| assert(k % QK_K == 0); | |
| const int KB = k / QK_K; | |
| constexpr int kVecs = QK_K / 16; | |
| block_q8_K * y = reinterpret_cast<block_q8_K *>(vy); | |
| // hold 16 float vecs from x | |
| __m512 v[kVecs]; | |
| // hold the quants vecs | |
| __m512i vq[kVecs / 4]; | |
| // hold the packed quants vecs | |
| __m512i vq_packed[kVecs / 4]; | |
| const __m512 signBit = _mm512_set1_ps(-0.f); | |
| for (int i = 0; i < KB; ++i) { | |
| // Compute max(abs(e)) for the block | |
| __m512 vamax = _mm512_set1_ps(0.f); | |
| for (int j = 0; j < kVecs; ++j) { | |
| v[j] = _mm512_loadu_ps(x); x += 16; | |
| vamax = _mm512_max_ps(vamax, _mm512_andnot_ps(signBit, v[j])); | |
| } | |
| const float amax = _mm512_reduce_max_ps(vamax); | |
| // Quantize these floats | |
| const float iscale = 127.f / amax; | |
| y[i].d = GGML_FP32_TO_FP16(1 / iscale); | |
| const float id = ( amax != 0.0f ) ? iscale : 0.f; | |
| const __m512 vscale = _mm512_set1_ps(id); | |
| // Apply multiplier and round to nearest integer | |
| for (int j = 0; j < kVecs; ++j) { | |
| v[j] = _mm512_mul_ps(v[j], vscale); | |
| v[j] = _mm512_roundscale_ps(v[j], (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC)); | |
| } | |
| // Pack to epi8 vecs | |
| for (int j = 0; j < kVecs / 4; ++j) { | |
| __m128i q8_0 = _mm512_cvtepi32_epi8(_mm512_cvtps_epi32(v[j * 4 + 0])); | |
| __m128i q8_1 = _mm512_cvtepi32_epi8(_mm512_cvtps_epi32(v[j * 4 + 1])); | |
| __m128i q8_2 = _mm512_cvtepi32_epi8(_mm512_cvtps_epi32(v[j * 4 + 2])); | |
| __m128i q8_3 = _mm512_cvtepi32_epi8(_mm512_cvtps_epi32(v[j * 4 + 3])); | |
| __m256i q8_01 = _mm256_insertf128_si256(_mm256_castsi128_si256(q8_0), (q8_1), 1); | |
| __m256i q8_23 = _mm256_insertf128_si256(_mm256_castsi128_si256(q8_2), (q8_3), 1); | |
| vq[j] = _mm512_inserti32x8(_mm512_castsi256_si512(q8_01), q8_23, 1); | |
| _mm512_storeu_si512((__m512i *)(y[i].qs + j * 64), vq[j]); | |
| } | |
| // Compute the bsums with vnni | |
| transpose_16x4_32bit(vq, vq_packed); | |
| const __m512i one = _mm512_set1_epi8(1); | |
| __m512i sum = _mm512_setzero_si512(); | |
| for (int k = 0; k < 4; ++k) { | |
| sum = _mm512_dpbusd_epi32(sum, one, vq_packed[k]); | |
| } | |
| _mm256_storeu_si256((__m256i *)(y[i].bsums), _mm512_cvtepi32_epi16(sum)); | |
| } | |
| } | |
| // quantize A from float to `vec_dot_type` | |
| template <typename T> | |
| inline void from_float(const float * x, char * vy, int64_t k); | |
| template <> | |
| inline void from_float<block_q8_0>(const float * x, char * vy, int64_t k) { | |
| quantize_row_q8_0(x, vy, k); | |
| } | |
| template <> | |
| inline void from_float<block_q8_1>(const float * x, char * vy, int64_t k) { | |
| quantize_row_q8_1(x, vy, k); | |
| } | |
| template <> | |
| inline void from_float<block_q8_K>(const float * x, char * vy, int64_t k) { | |
| // TODO: this is reference impl! | |
| quantize_row_q8_K(x, vy, k); | |
| quantize_row_q8_K_vnni(x, vy, k); | |
| } | |
| // load A from memory to array when nrows can not fill in whole tile | |
| void unpack_A(int8_t * RESTRICT tile, const block_q8_0 * RESTRICT A, int lda, int nr) { | |
| assert(nr != TILE_M); | |
| for (int m = 0; m < nr; ++m) { | |
| const __m256i v = _mm256_loadu_si256((const __m256i *)(A[m * lda].qs)); | |
| _mm256_storeu_si256((__m256i *)(tile + m * TILE_K), v); | |
| } | |
| } | |
| void unpack_A(int8_t * RESTRICT tile, const block_q8_1 * RESTRICT A, int lda, int nr) { | |
| assert(nr != TILE_M); | |
| for (int m = 0; m < nr; ++m) { | |
| const __m256i v = _mm256_loadu_si256((const __m256i *)(A[m * lda].qs)); | |
| _mm256_storeu_si256((__m256i *)(tile + m * TILE_K), v); | |
| } | |
| } | |
| template <typename TB> | |
| void unpack_A(int8_t * RESTRICT tile, const block_q8_K * RESTRICT A, int lda, int k, int nr) { | |
| assert(nr <= TILE_M); | |
| for (int m = 0; m < nr; ++m) { | |
| const __m256i v = _mm256_loadu_si256((const __m256i *)(A[m * lda].qs + k * 32)); | |
| _mm256_storeu_si256((__m256i *)(tile + m * TILE_K), v); | |
| } | |
| } | |
| template <> | |
| void unpack_A<block_q6_K>(int8_t * RESTRICT tile, const block_q8_K * RESTRICT A, int lda, int k, int nr) { | |
| assert(nr <= TILE_M); | |
| // zero padding k from 16 to 32, so that we don't have to re-config amx | |
| const __m128i zero = _mm_setzero_si128(); | |
| for (int m = 0; m < nr; ++m) { | |
| const __m128i v = _mm_loadu_si128((const __m128i *)(A[m * lda].qs + k * 16)); | |
| const __m256i r = _mm256_insertf128_si256(_mm256_castsi128_si256(v), zero, 1); | |
| _mm256_storeu_si256((__m256i *)(tile + m * TILE_K), r); | |
| } | |
| } | |
| inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) { | |
| const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi); | |
| const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp); | |
| const __m256i lowMask = _mm256_set1_epi8(0xF); | |
| return _mm256_and_si256(lowMask, bytes); | |
| } | |
| // used for block_q4_K | |
| inline __m512i bytes_from_nibbles_64(const uint8_t * rsi) { | |
| const __m256i tmp = _mm256_loadu_si256((const __m256i *)rsi); | |
| const __m256i lowMask = _mm256_set1_epi8(0xF); | |
| const __m256i q4l = _mm256_and_si256(tmp, lowMask); | |
| const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(tmp, 4), lowMask); | |
| return _mm512_inserti32x8(_mm512_castsi256_si512(q4l), q4h, 1); | |
| } | |
| // used for block_q5_K | |
| inline __m512i bytes_from_nibbles_64(const uint8_t * qs, const uint8_t * qh, int k) { | |
| const __m256i lowMask = _mm256_set1_epi8(0xF); | |
| __m256i hmask = _mm256_set1_epi8(1); | |
| hmask = _mm256_slli_epi16(hmask, k); | |
| const __m256i q5bits = _mm256_loadu_si256((const __m256i *)qs); | |
| const __m256i hbits = _mm256_loadu_si256((const __m256i *)qh); | |
| const __m256i q5l_0 = _mm256_and_si256(q5bits, lowMask); | |
| const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), k + 0), 4); | |
| const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0); | |
| hmask = _mm256_slli_epi16(hmask, 1); | |
| const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), lowMask); | |
| const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), k + 1), 4); | |
| const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1); | |
| return _mm512_inserti32x8(_mm512_castsi256_si512(q5_0), q5_1, 1); | |
| } | |
| // used for block_q6_K | |
| inline void bytes_from_nibbles_128(__m512i& r0, __m512i& r1, const uint8_t * qs, const uint8_t * qh) { | |
| const __m256i m4 = _mm256_set1_epi8(0xF); | |
| const __m256i m2 = _mm256_set1_epi8(0x3); | |
| const __m256i q6bits1 = _mm256_loadu_si256((const __m256i *)qs); | |
| const __m256i q6bits2 = _mm256_loadu_si256((const __m256i *)(qs + 32)); | |
| const __m256i q6bitsH = _mm256_loadu_si256((const __m256i *)qh); | |
| const __m256i q6h_0 = _mm256_slli_epi16(_mm256_and_si256( q6bitsH, m2), 4); | |
| const __m256i q6h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q6bitsH, 2), m2), 4); | |
| const __m256i q6h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q6bitsH, 4), m2), 4); | |
| const __m256i q6h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q6bitsH, 6), m2), 4); | |
| const __m256i q6_0 = _mm256_or_si256(_mm256_and_si256(q6bits1, m4), q6h_0); | |
| const __m256i q6_1 = _mm256_or_si256(_mm256_and_si256(q6bits2, m4), q6h_1); | |
| const __m256i q6_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q6bits1, 4), m4), q6h_2); | |
| const __m256i q6_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q6bits2, 4), m4), q6h_3); | |
| r0 = _mm512_inserti32x8(_mm512_castsi256_si512(q6_0), q6_1, 1); | |
| r1 = _mm512_inserti32x8(_mm512_castsi256_si512(q6_2), q6_3, 1); | |
| } | |
| inline __m512i packNibbles(__m512i r0, __m512i r1) { | |
| return _mm512_or_si512(r0, _mm512_slli_epi16(r1, 4)); | |
| } | |
| template <typename TB> | |
| inline void pack_qs(void * RESTRICT packed_B, const TB * RESTRICT B, int KB) { | |
| int8_t tmp[8 * 64]; | |
| __m256i v[8], v2[8]; | |
| for (int n = 0; n < 8; ++n) { | |
| v[n] = bytes_from_nibbles_32(B[n * KB].qs); | |
| } | |
| transpose_8x8_32bit(v, v2); | |
| for (int n = 0; n < 8; ++n) { | |
| _mm256_storeu_si256((__m256i *)(tmp + n * 64), v2[n]); | |
| } | |
| for (int n = 0; n < 8; ++n) { | |
| v[n] = bytes_from_nibbles_32(B[(n + 8) * KB].qs); | |
| } | |
| transpose_8x8_32bit(v, v2); | |
| for (int n = 0; n < 8; ++n) { | |
| _mm256_storeu_si256((__m256i *)(tmp + n * 64 + 32), v2[n]); | |
| } | |
| // pack again with 128 to fully utilize vector length | |
| for (int n = 0; n < 8; n += 2) { | |
| __m512i r0 = _mm512_loadu_si512((const __m512i *)(tmp + n * 64)); | |
| __m512i r1 = _mm512_loadu_si512((const __m512i *)(tmp + n * 64 + 64)); | |
| __m512i r1r0 = packNibbles(r0, r1); | |
| _mm512_storeu_si512((__m512i *)((char *)packed_B + n * 32), r1r0); | |
| } | |
| } | |
| template <> | |
| inline void pack_qs<block_q8_0>(void * RESTRICT packed_B, const block_q8_0 * RESTRICT B, int KB) { | |
| __m256i v[8], v2[8]; | |
| for (int n = 0; n < 8; ++n) { | |
| v[n] = _mm256_loadu_si256((const __m256i *)(B[n * KB].qs)); | |
| } | |
| transpose_8x8_32bit(v, v2); | |
| for (int n = 0; n < 8; ++n) { | |
| _mm256_storeu_si256((__m256i *)((char *)packed_B + n * 64), v2[n]); | |
| } | |
| for (int n = 0; n < 8; ++n) { | |
| v[n] = _mm256_loadu_si256((const __m256i *)(B[(n + 8) * KB].qs)); | |
| } | |
| transpose_8x8_32bit(v, v2); | |
| for (int n = 0; n < 8; ++n) { | |
| _mm256_storeu_si256((__m256i *)((char *)packed_B + n * 64 + 32), v2[n]); | |
| } | |
| } | |
| template <> | |
| inline void pack_qs<block_q4_K>(void * RESTRICT packed_B, const block_q4_K * RESTRICT B, int KB) { | |
| __m512i v[16]; | |
| // QK_K 256 with 8 groups, handle 2 groups at a time | |
| char * pb = (char *)packed_B; | |
| for (int k = 0; k < QK_K / 64; ++k) { | |
| // pack 2 groups { n, g, k} to {g, k/4, 4n} | |
| // e.g. {16, 2, 32} to {2, 8, 64} | |
| for (int n = 0; n < TILE_N; ++n) { | |
| v[n] = bytes_from_nibbles_64(B[n * KB].qs + k * 32); | |
| } | |
| transpose_16x16_32bit(v); | |
| // pack again with 128 to fully utilize vector length | |
| for (int n = 0; n < TILE_N; n += 2) { | |
| _mm512_storeu_si512((__m512i *)pb, packNibbles(v[n], v[n + 1])); | |
| pb += 64; | |
| } | |
| } | |
| } | |
| template <> | |
| inline void pack_qs<block_q5_K>(void * RESTRICT packed_B, const block_q5_K * RESTRICT B, int KB) { | |
| __m512i v[16]; | |
| const __m512i lowMask = _mm512_set1_epi8(0xF); | |
| // QK_K 256 with 8 groups, handle 2 groups at a time | |
| char * pb = (char *)packed_B; | |
| char * ph = (char *)packed_B + (QK_K / 2) * TILE_N; | |
| for (int k = 0; k < QK_K / 64; ++k) { | |
| // pack 2 groups { n, g, k} to {g, k/4, 4n} | |
| // e.g. {16, 2, 32} to {2, 8, 64} | |
| for (int n = 0; n < TILE_N; ++n) { | |
| v[n] = bytes_from_nibbles_64(B[n * KB].qs + k * 32, B[n * KB].qh, /* group */2 * k); | |
| } | |
| transpose_16x16_32bit(v); | |
| // 1. pack lower 4bits with 2 groups | |
| for (int n = 0; n < TILE_N; n += 2) { | |
| // get lower 4 bits | |
| const __m512i r0 = _mm512_and_si512(v[n], lowMask); | |
| const __m512i r1 = _mm512_and_si512(v[n + 1], lowMask); | |
| _mm512_storeu_si512((__m512i *)pb, packNibbles(r0, r1)); pb += 64; | |
| } | |
| // 2. pack higher 1bit with 2 groups | |
| const __m512i hmask = _mm512_set1_epi8(0x10); | |
| for (int g = 0; g < 2; ++g) { | |
| __m512i hbits = _mm512_setzero_si512(); | |
| hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 8 + 0], hmask), 4)); | |
| hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 8 + 1], hmask), 3)); | |
| hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 8 + 2], hmask), 2)); | |
| hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 8 + 3], hmask), 1)); | |
| hbits = _mm512_add_epi8(hbits, _mm512_and_si512(v[g * 8 + 4], hmask) ); | |
| hbits = _mm512_add_epi8(hbits, _mm512_slli_epi16(_mm512_and_si512(v[g * 8 + 5], hmask), 1)); | |
| hbits = _mm512_add_epi8(hbits, _mm512_slli_epi16(_mm512_and_si512(v[g * 8 + 6], hmask), 2)); | |
| hbits = _mm512_add_epi8(hbits, _mm512_slli_epi16(_mm512_and_si512(v[g * 8 + 7], hmask), 3)); | |
| _mm512_storeu_si512((__m512i *)ph, hbits); ph += 64; | |
| } | |
| } | |
| } | |
| template <> | |
| inline void pack_qs<block_q6_K>(void * RESTRICT packed_B, const block_q6_K * RESTRICT B, int KB) { | |
| __m512i v[32]; | |
| const __m512i lowMask = _mm512_set1_epi8(0xF); | |
| // QK_K 256 with 8 groups, handle 4 groups at a time | |
| char * pb = (char *)packed_B; | |
| char * ph = (char *)packed_B + (QK_K / 2) * TILE_N; | |
| for (int k = 0; k < QK_K / 128; ++k) { | |
| for (int n = 0; n < TILE_N; ++n) { | |
| bytes_from_nibbles_128(v[n], v[n + 16], B[n * KB].ql + k * 64, B[n * KB].qh + k * 32); | |
| } | |
| // top half: group 0,1 or 4,5; bottom half: group 2,3 or 6,7 | |
| transpose_16x16_32bit(v); | |
| transpose_16x16_32bit(v + 16); | |
| // 1. pack lower 4bits with 4 groups | |
| for (int n = 0; n < 32; n += 2) { | |
| const __m512i r0 = _mm512_and_si512(v[n], lowMask); | |
| const __m512i r1 = _mm512_and_si512(v[n + 1], lowMask); | |
| _mm512_storeu_si512((__m512i *)pb, packNibbles(r0, r1)); pb += 64; | |
| } | |
| // 2. pack higher 2bit with 4 groups | |
| const __m512i hmask = _mm512_set1_epi8(0x30); | |
| for (int g = 0; g < 8; ++g) { | |
| __m512i hbits = _mm512_setzero_si512(); | |
| hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 4 + 0], hmask), 4)); | |
| hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 4 + 1], hmask), 2)); | |
| hbits = _mm512_add_epi8(hbits, _mm512_and_si512(v[g * 4 + 2], hmask) ); | |
| hbits = _mm512_add_epi8(hbits, _mm512_slli_epi16(_mm512_and_si512(v[g * 4 + 3], hmask), 2)); | |
| _mm512_storeu_si512((__m512i *)ph, hbits); ph += 64; | |
| } | |
| } | |
| } | |
| template <> | |
| inline void pack_qs<block_iq4_xs>(void * RESTRICT packed_B, const block_iq4_xs * RESTRICT B, int KB) { | |
| __m512i v[16]; | |
| char * pb = (char *)packed_B; | |
| for (int k = 0; k < QK_K / 64; ++k) { | |
| for (int n = 0; n < TILE_N; ++n) { | |
| __m256i r0 = bytes_from_nibbles_32(B[n * KB].qs + k * 32 + 0); | |
| __m256i r1 = bytes_from_nibbles_32(B[n * KB].qs + k * 32 + 16); | |
| v[n] = _mm512_inserti32x8(_mm512_castsi256_si512(r0), r1, 1); | |
| } | |
| transpose_16x16_32bit(v); | |
| // pack again with 128 to fully utilize vector length | |
| for (int n = 0; n < TILE_N; n += 2) { | |
| _mm512_storeu_si512((__m512i *)pb, packNibbles(v[n], v[n + 1])); | |
| pb += 64; | |
| } | |
| } | |
| } | |
| // pack B to vnni formats in 4bits or 8 bits | |
| void pack_B(void * RESTRICT packed_B, const block_q4_0 * RESTRICT B, int KB) { | |
| pack_qs(packed_B, B, KB); | |
| ggml_half * d0 = reinterpret_cast<ggml_half *>((char *)packed_B + TILE_N * TILE_K / 2); | |
| for (int n = 0; n < TILE_N; ++n) { | |
| d0[n] = B[n * KB].d; | |
| } | |
| } | |
| void pack_B(void * RESTRICT packed_B, const block_q4_1 * RESTRICT B, int KB) { | |
| pack_qs(packed_B, B, KB); | |
| ggml_half * d0 = reinterpret_cast<ggml_half *>((char *)packed_B + TILE_N * TILE_K / 2); | |
| ggml_half * m0 = d0 + TILE_N; | |
| for (int n = 0; n < TILE_N; ++n) { | |
| d0[n] = B[n * KB].d; | |
| m0[n] = B[n * KB].m; | |
| } | |
| } | |
| inline void s8s8_compensation(void * RESTRICT packed_B) { | |
| // packed_B layout: | |
| // quants {TILE_N, TILEK} int8_t | |
| // d0 {TILE_N} ggml_half | |
| // comp {TILE_N} int32_t | |
| const int offset = TILE_N * TILE_K + TILE_N * sizeof(ggml_half); | |
| __m512i vcomp = _mm512_setzero_si512(); | |
| const __m512i off = _mm512_set1_epi8(static_cast<char>(0x80)); | |
| for (int k = 0; k < 8; ++k) { | |
| __m512i vb = _mm512_loadu_si512((const __m512i *)((const char *)packed_B + k * 64)); | |
| vcomp = _mm512_dpbusd_epi32(vcomp, off, vb); | |
| } | |
| _mm512_storeu_si512((__m512i *)((char *)(packed_B) + offset), vcomp); | |
| } | |
| void pack_B(void * RESTRICT packed_B, const block_q8_0 * RESTRICT B, int KB) { | |
| pack_qs(packed_B, B, KB); | |
| ggml_half * d0 = reinterpret_cast<ggml_half *>((char *)packed_B + TILE_N * TILE_K); | |
| for (int n = 0; n < TILE_N; ++n) { | |
| d0[n] = B[n * KB].d; | |
| } | |
| s8s8_compensation(packed_B); | |
| } | |
| // convert 8 * {min, scale} from int6 to int8 | |
| inline void unpack_mins_and_scales(const uint8_t * scales, uint32_t * utmp) { | |
| const uint32_t kmask1 = 0x3f3f3f3f; | |
| const uint32_t kmask2 = 0x0f0f0f0f; | |
| const uint32_t kmask3 = 0x03030303; | |
| memcpy(utmp, scales, 12); | |
| utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); | |
| const uint32_t uaux = utmp[1] & kmask1; | |
| utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); | |
| utmp[2] = uaux; | |
| utmp[0] &= kmask1; | |
| } | |
| // packed_B layout: | |
| // quants {8, TILE_N, 16} uint8 | |
| // scales {8, TILE_N} uint8 | |
| // mins {8, TILE_N} uint8 | |
| // d {TILE_N} ggml_half | |
| // dmin {TILE_N} ggml_half | |
| void pack_B(void * RESTRICT packed_B, const block_q4_K * RESTRICT B, int KB) { | |
| pack_qs(packed_B, B, KB); | |
| uint8_t * scales = reinterpret_cast<uint8_t *>((char *)packed_B + (QK_K / 2) * TILE_N); | |
| uint8_t * mins = scales + 8 * TILE_N; | |
| ggml_half * d = reinterpret_cast<ggml_half *>(mins + 8 * TILE_N); | |
| ggml_half * dmin = d + TILE_N; | |
| union { | |
| uint32_t u32[4]; | |
| uint8_t u8[16]; | |
| } s; | |
| for (int n = 0; n < TILE_N; ++n) { | |
| unpack_mins_and_scales(B[n * KB].scales, s.u32); | |
| for (int k = 0; k < 8; ++k) { | |
| scales[k * TILE_N + n] = s.u8[k]; | |
| mins[(k >> 1) * TILE_N * 2 + n * 2 + (k & 0x1)] = s.u8[k + 8]; | |
| } | |
| d[n] = B[n * KB].d; | |
| dmin[n] = B[n * KB].dmin; | |
| } | |
| } | |
| // packed_B layout: | |
| // quants {8, TILE_N, 16} uint8 | |
| // qh {8, TILE_N, 4} uint8 | |
| // scales {8, TILE_N} uint8 | |
| // mins {8, TILE_N} uint8 | |
| // d {TILE_N} ggml_half | |
| // dmin {TILE_N} ggml_half | |
| void pack_B(void * RESTRICT packed_B, const block_q5_K * RESTRICT B, int KB) { | |
| pack_qs(packed_B, B, KB); | |
| uint8_t * scales = reinterpret_cast<uint8_t *>((char *)packed_B + (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N); | |
| uint8_t * mins = scales + 8 * TILE_N; | |
| ggml_half * d = reinterpret_cast<ggml_half *>(mins + 8 * TILE_N); | |
| ggml_half * dmin = d + TILE_N; | |
| union { | |
| uint32_t u32[4]; | |
| uint8_t u8[16]; | |
| } s; | |
| for (int n = 0; n < TILE_N; ++n) { | |
| unpack_mins_and_scales(B[n * KB].scales, s.u32); | |
| for (int k = 0; k < 8; ++k) { | |
| scales[k * TILE_N + n] = s.u8[k]; | |
| mins[(k >> 1) * TILE_N * 2 + n * 2 + (k & 0x1)] = s.u8[k + 8]; | |
| } | |
| d[n] = B[n * KB].d; | |
| dmin[n] = B[n * KB].dmin; | |
| } | |
| } | |
| // packed_B layout: | |
| // quants {16, TILE_N, 8} uint8 | |
| // qh {16, TILE_N, 4} uint8 | |
| // scales {16, TILE_N} uint8 | |
| // d {TILE_N} ggml_half | |
| void pack_B(void * RESTRICT packed_B, const block_q6_K * RESTRICT B, int KB) { | |
| pack_qs(packed_B, B, KB); | |
| uint8_t * scales = reinterpret_cast<uint8_t *>((char *)packed_B + (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N); | |
| ggml_half * d = reinterpret_cast<ggml_half *>(scales + 16 * TILE_N); | |
| for (int n = 0; n < TILE_N; ++n) { | |
| const int8_t * ps = B[n * KB].scales; | |
| for (int k = 0; k < 16; ++k) { | |
| scales[k * TILE_N + n] = ps[k]; | |
| } | |
| d[n] = B[n * KB].d; | |
| } | |
| } | |
| // packed_B layout: | |
| // quants {8, TILE_N, 16} uint8 | |
| // scales {8, TILE_N} int8 | |
| // d {TILE_N} ggml_half | |
| void pack_B(void * RESTRICT packed_B, const block_iq4_xs * RESTRICT B, int KB) { | |
| pack_qs(packed_B, B, KB); | |
| int8_t * scales = reinterpret_cast<int8_t *>((char *)packed_B + (QK_K / 2) * TILE_N); | |
| ggml_half * d = reinterpret_cast<ggml_half *>(scales + 8 * TILE_N); | |
| // pack the scales | |
| for (int n = 0; n < TILE_N; ++n) { | |
| uint16_t sh = B[n * KB].scales_h; | |
| for (int k = 0; k < 8; k += 2) { | |
| const int16_t ls1 = ((B[n * KB].scales_l[k / 2] & 0xf) | ((sh << 4) & 0x30)) - 32; | |
| const int16_t ls2 = ((B[n * KB].scales_l[k / 2] >> 4) | ((sh << 2) & 0x30)) - 32; | |
| scales[(k + 0) * TILE_N + n] = ls1; | |
| scales[(k + 1) * TILE_N + n] = ls2; | |
| sh >>= 4; | |
| } | |
| d[n] = B[n * KB].d; | |
| } | |
| } | |
| template<typename TB, typename packed_B_t = packed_B_type<TB>> | |
| void unpack_B(packed_B_t * RESTRICT tile, const void * RESTRICT packed_B) { | |
| GGML_UNUSED(tile); | |
| GGML_UNUSED(packed_B); | |
| }; | |
| template <> | |
| void unpack_B<block_q4_0>(int8_t * RESTRICT tile, const void * RESTRICT packed_B) { | |
| const __m512i off = _mm512_set1_epi8(8); | |
| const __m512i lowMask = _mm512_set1_epi8(0xF); | |
| for (int n = 0; n < 8; n += 2) { | |
| __m512i bytes = _mm512_loadu_si512((const __m512i *)((const char *)packed_B + n * 32)); | |
| const __m512i r0 = _mm512_sub_epi8(_mm512_and_si512(bytes, lowMask), off); | |
| const __m512i r1 = _mm512_sub_epi8(_mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask), off); | |
| _mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0); | |
| _mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1); | |
| } | |
| } | |
| template <> | |
| void unpack_B<block_q4_1>(uint8_t * RESTRICT tile, const void * RESTRICT packed_B) { | |
| const __m512i lowMask = _mm512_set1_epi8(0xF); | |
| for (int n = 0; n < 8; n += 2) { | |
| __m512i bytes = _mm512_loadu_si512((const __m512i *)((const char *)packed_B + n * 32)); | |
| const __m512i r0 = _mm512_and_si512(bytes, lowMask); | |
| const __m512i r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); | |
| _mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0); | |
| _mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1); | |
| } | |
| } | |
| // packed_B_t for QKK is int8_t | |
| template <typename TB> | |
| void unpack_B(int8_t * RESTRICT tile, const void * RESTRICT packed_B, int k) { | |
| const int packed_B_group_size = QK_K / 2 * TILE_N / 8; | |
| const char * packed_B_group = (const char *)packed_B + k * packed_B_group_size; | |
| const __m512i lowMask = _mm512_set1_epi8(0xF); | |
| for (int n = 0; n < 8; n += 2) { | |
| __m512i bytes = _mm512_loadu_si512(packed_B_group + n * 32); | |
| const __m512i r0 = _mm512_and_si512(bytes, lowMask); | |
| const __m512i r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); | |
| _mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0); | |
| _mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1); | |
| } | |
| } | |
| template <> | |
| void unpack_B<block_q5_K>(int8_t * RESTRICT tile, const void * RESTRICT packed_B, int k) { | |
| // lower 4bits, stride 256 bytes | |
| const int packed_l4_group_size = QK_K / 2 * TILE_N / 8; | |
| const char * pb = (const char *)packed_B + k * packed_l4_group_size; | |
| // higher 1bit, stride 64 bytes | |
| const int packed_h1_group_size = QK_K / 8 * TILE_N / 8; | |
| const char * ph = (const char *)packed_B + (QK_K / 2) * TILE_N + k * packed_h1_group_size; | |
| const __m512i hbits = _mm512_loadu_si512(ph); | |
| const __m512i lowMask = _mm512_set1_epi8(0xF); | |
| __m512i hmask0 = _mm512_set1_epi8(0x1); | |
| __m512i hmask1 = _mm512_set1_epi8(0x2); | |
| for (int n = 0; n < 8; n += 2) { | |
| __m512i bytes = _mm512_loadu_si512(pb + n * 32); | |
| __m512i r0 = _mm512_and_si512(bytes, lowMask); | |
| __m512i r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); | |
| __m512i h0 = _mm512_slli_epi16(_mm512_srli_epi16(_mm512_and_si512(hbits, hmask0), n), 4); | |
| __m512i h1 = _mm512_slli_epi16(_mm512_srli_epi16(_mm512_and_si512(hbits, hmask1), n + 1), 4); | |
| hmask0 = _mm512_slli_epi16(hmask0, 2); | |
| hmask1 = _mm512_slli_epi16(hmask1, 2); | |
| r0 = _mm512_add_epi8(r0, h0); | |
| r1 = _mm512_add_epi8(r1, h1); | |
| _mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0); | |
| _mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1); | |
| } | |
| } | |
| template <> | |
| void unpack_B<block_q6_K>(int8_t * RESTRICT tile, const void * RESTRICT packed_B, int k) { | |
| // lower 4bits, stride 128 bytes | |
| const int packed_l4_group_size = QK_K / 2 * TILE_N / 16; | |
| const char * pb = (const char *)packed_B + k * packed_l4_group_size; | |
| // higher 2bits, stride 64 bytes | |
| const int packed_h2_group_size = QK_K / 4 * TILE_N / 16; | |
| const char * ph = (const char *)packed_B + (QK_K / 2) * TILE_N + k * packed_h2_group_size; | |
| const __m512i hbits = _mm512_loadu_si512(ph); | |
| const __m512i off = _mm512_set1_epi8(32); | |
| const __m512i lowMask = _mm512_set1_epi8(0xF); | |
| __m512i hmask0 = _mm512_set1_epi8(0x3); // 0011 | |
| __m512i hmask1 = _mm512_set1_epi8(0xC); // 1100 | |
| // notes: skip zero padding from row4 to row7 as we have done so in `unpack_A` | |
| __m512i bytes = _mm512_loadu_si512(pb); | |
| __m512i r0 = _mm512_and_si512(bytes, lowMask); | |
| __m512i r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); | |
| __m512i h0 = _mm512_slli_epi16(_mm512_and_si512(hbits, hmask0), 4); | |
| __m512i h1 = _mm512_slli_epi16(_mm512_and_si512(hbits, hmask1), 2); | |
| _mm512_storeu_si512((__m512i *)(tile + 0), _mm512_sub_epi8(_mm512_add_epi8(r0, h0), off)); | |
| _mm512_storeu_si512((__m512i *)(tile + 64), _mm512_sub_epi8(_mm512_add_epi8(r1, h1), off)); | |
| hmask0 = _mm512_slli_epi16(hmask0, 4); | |
| hmask1 = _mm512_slli_epi16(hmask1, 4); | |
| bytes = _mm512_loadu_si512(pb + 64); | |
| r0 = _mm512_and_si512(bytes, lowMask); | |
| r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); | |
| h0 = _mm512_and_si512(hbits, hmask0); | |
| h1 = _mm512_srli_epi16(_mm512_and_si512(hbits, hmask1), 2); | |
| _mm512_storeu_si512((__m512i *)(tile + 128), _mm512_sub_epi8(_mm512_add_epi8(r0, h0), off)); | |
| _mm512_storeu_si512((__m512i *)(tile + 192), _mm512_sub_epi8(_mm512_add_epi8(r1, h1), off)); | |
| } | |
| template <> | |
| void unpack_B<block_iq4_xs>(int8_t * RESTRICT tile, const void * RESTRICT packed_B, int k) { | |
| static const __m512i values128 = _mm512_set_epi8( | |
| 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127, | |
| 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127, | |
| 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127, | |
| 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127 | |
| ); | |
| const int packed_B_group_size = QK_K / 2 * TILE_N / 8; | |
| const char * pb = (const char *)packed_B + k * packed_B_group_size; | |
| const __m512i lowMask = _mm512_set1_epi8(0xF); | |
| for (int n = 0; n < 8; n += 2) { | |
| __m512i bytes = _mm512_loadu_si512(pb + n * 32); | |
| const __m512i r0 = _mm512_shuffle_epi8(values128, _mm512_and_si512(bytes, lowMask)); | |
| const __m512i r1 = _mm512_shuffle_epi8(values128, _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask)); | |
| _mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0); | |
| _mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1); | |
| } | |
| } | |
| template <typename TA, typename TB, bool is_acc> | |
| struct acc_C {}; | |
| template <bool is_acc> | |
| struct acc_C<block_q8_0, block_q4_0, is_acc> { | |
| static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_0 * A, int lda, const void * packed_B, int nr) { | |
| const int offset = TILE_N * TILE_K / 2; | |
| const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset))); | |
| for (int m = 0; m < nr; ++m) { | |
| const __m512 vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].d)); | |
| const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N)); | |
| __m512 vsum; | |
| if (is_acc) { | |
| vsum = _mm512_loadu_ps(C + m * ldc); | |
| } else { | |
| vsum = _mm512_set1_ps(0.f); | |
| } | |
| vsum = _mm512_fmadd_ps(vtile, _mm512_mul_ps(vd0, vd1), vsum); | |
| _mm512_storeu_ps(C + m * ldc, vsum); | |
| } | |
| } | |
| }; | |
| template <bool is_acc> | |
| struct acc_C<block_q8_1, block_q4_1, is_acc> { | |
| static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_1 * A, int lda, const void * packed_B, int nr) { | |
| const int offset = TILE_N * TILE_K / 2; | |
| const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset))); | |
| const __m512 vm0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset + TILE_N * sizeof(ggml_half)))); | |
| for (int m = 0; m < nr; ++m) { | |
| const __m512 vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].d)); | |
| const __m512 vs1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].s)); | |
| const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N)); | |
| __m512 vsum; | |
| if (is_acc) { | |
| vsum = _mm512_loadu_ps(C + m * ldc); | |
| } else { | |
| vsum = _mm512_set1_ps(0.f); | |
| } | |
| vsum = _mm512_fmadd_ps(vtile, _mm512_mul_ps(vd0, vd1), vsum); | |
| vsum = _mm512_fmadd_ps(vm0, vs1, vsum); | |
| _mm512_storeu_ps(C + m * ldc, vsum); | |
| } | |
| } | |
| }; | |
| template <bool is_acc> | |
| struct acc_C<block_q8_0, block_q8_0, is_acc> { | |
| static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_0 * A, int lda, const void * packed_B, int nr) { | |
| const int offset = TILE_N * TILE_K; | |
| const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset))); | |
| for (int m = 0; m < nr; ++m) { | |
| const __m512 vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].d)); | |
| const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N)); | |
| __m512 vsum; | |
| if (is_acc) { | |
| vsum = _mm512_loadu_ps(C + m * ldc); | |
| } else { | |
| vsum = _mm512_set1_ps(0.f); | |
| } | |
| vsum = _mm512_fmadd_ps(vtile, _mm512_mul_ps(vd0, vd1), vsum); | |
| _mm512_storeu_ps(C + m * ldc, vsum); | |
| } | |
| } | |
| }; | |
| template <bool is_acc> | |
| struct acc_C<block_q8_K, block_q4_K, is_acc> { | |
| static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_K * A, int lda, const void * packed_B, int nr) { | |
| const uint8_t * scales = reinterpret_cast<const uint8_t *>((const char *)packed_B + (QK_K / 2) * TILE_N); | |
| const uint8_t * mins = scales + 8 * TILE_N; | |
| const ggml_half * d0 = reinterpret_cast<const ggml_half *>(mins + 8 * TILE_N); | |
| const ggml_half * dmin = d0 + TILE_N; | |
| const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)d0)); | |
| const __m512 vdmin = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)dmin)); | |
| for (int m = 0; m < nr; ++m) { | |
| const float d1 = A[m * lda].d; | |
| const __m512 vd = _mm512_mul_ps(_mm512_set1_ps(d1), vd0); | |
| const __m512 vdm = _mm512_mul_ps(_mm512_set1_ps(-d1), vdmin); | |
| const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N)); | |
| __m512 vsum; | |
| if (is_acc) { | |
| vsum = _mm512_loadu_ps(C + m * ldc); | |
| } else { | |
| vsum = _mm512_set1_ps(0.f); | |
| } | |
| const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[m * lda].bsums); | |
| const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1)); | |
| __m512i acc_m = _mm512_setzero_si512(); | |
| for (int k = 0; k < 4; ++k) { | |
| __m512i vmask = _mm512_set1_epi32(k); | |
| __m512i va = _mm512_permutexvar_epi32(vmask, _mm512_castsi128_si512(q8s)); | |
| __m512i vb = _mm512_cvtepi8_epi16(_mm256_loadu_si256((const __m256i *)(mins + k * 32))); | |
| acc_m = _mm512_dpwssds_epi32(acc_m, va, vb); | |
| } | |
| vsum = _mm512_fmadd_ps(vtile, vd, vsum); | |
| vsum = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc_m), vdm, vsum); | |
| _mm512_storeu_ps(C + m * ldc, vsum); | |
| } | |
| } | |
| }; | |
| template <bool is_acc> | |
| struct acc_C<block_q8_K, block_q5_K, is_acc> { | |
| static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_K * A, int lda, const void * packed_B, int nr) { | |
| const uint8_t * scales = reinterpret_cast<const uint8_t *>((const char *)packed_B + (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N); | |
| const uint8_t * mins = scales + 8 * TILE_N; | |
| const ggml_half * d0 = reinterpret_cast<const ggml_half *>(mins + 8 * TILE_N); | |
| const ggml_half * dmin = d0 + TILE_N; | |
| const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)d0)); | |
| const __m512 vdmin = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)dmin)); | |
| for (int m = 0; m < nr; ++m) { | |
| const float d1 = A[m * lda].d; | |
| const __m512 vd = _mm512_mul_ps(_mm512_set1_ps(d1), vd0); | |
| const __m512 vdm = _mm512_mul_ps(_mm512_set1_ps(-d1), vdmin); | |
| const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N)); | |
| __m512 vsum; | |
| if (is_acc) { | |
| vsum = _mm512_loadu_ps(C + m * ldc); | |
| } else { | |
| vsum = _mm512_set1_ps(0.f); | |
| } | |
| const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[m * lda].bsums); | |
| const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1)); | |
| __m512i acc_m = _mm512_setzero_si512(); | |
| for (int k = 0; k < 4; ++k) { | |
| __m512i vmask = _mm512_set1_epi32(k); | |
| __m512i va = _mm512_permutexvar_epi32(vmask, _mm512_castsi128_si512(q8s)); | |
| __m512i vb = _mm512_cvtepi8_epi16(_mm256_loadu_si256((const __m256i *)(mins + k * 32))); | |
| acc_m = _mm512_dpwssds_epi32(acc_m, va, vb); | |
| } | |
| vsum = _mm512_fmadd_ps(vtile, vd, vsum); | |
| vsum = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc_m), vdm, vsum); | |
| _mm512_storeu_ps(C + m * ldc, vsum); | |
| } | |
| } | |
| }; | |
| template <bool is_acc> | |
| struct acc_C<block_q8_K, block_q6_K, is_acc> { | |
| static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_K * A, int lda, const void * packed_B, int nr) { | |
| const uint8_t * scales = reinterpret_cast<const uint8_t *>((const char *)packed_B + (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N); | |
| const ggml_half * d0 = reinterpret_cast<const ggml_half *>(scales + 16 * TILE_N); | |
| const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)d0)); | |
| for (int m = 0; m < nr; ++m) { | |
| const float d1 = A[m * lda].d; | |
| const __m512 vd = _mm512_mul_ps(_mm512_set1_ps(d1), vd0); | |
| const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N)); | |
| __m512 vsum; | |
| if (is_acc) { | |
| vsum = _mm512_loadu_ps(C + m * ldc); | |
| } else { | |
| vsum = _mm512_set1_ps(0.f); | |
| } | |
| vsum = _mm512_fmadd_ps(vtile, vd, vsum); | |
| _mm512_storeu_ps(C + m * ldc, vsum); | |
| } | |
| } | |
| }; | |
| template <bool is_acc> | |
| struct acc_C<block_q8_K, block_iq4_xs, is_acc> { | |
| static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_K * A, int lda, const void * packed_B, int nr) { | |
| const int8_t * scales = reinterpret_cast<const int8_t *>((const char *)packed_B + (QK_K / 2) * TILE_N); | |
| const ggml_half * d0 = reinterpret_cast<const ggml_half *>(scales + 8 * TILE_N); | |
| const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)d0)); | |
| for (int m = 0; m < nr; ++m) { | |
| const float d1 = A[m * lda].d; | |
| const __m512 vd = _mm512_mul_ps(_mm512_set1_ps(d1), vd0); | |
| const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N)); | |
| __m512 vsum; | |
| if (is_acc) { | |
| vsum = _mm512_loadu_ps(C + m * ldc); | |
| } else { | |
| vsum = _mm512_set1_ps(0.f); | |
| } | |
| vsum = _mm512_fmadd_ps(vtile, vd, vsum); | |
| _mm512_storeu_ps(C + m * ldc, vsum); | |
| } | |
| } | |
| }; | |
| template <typename TB> constexpr int get_quants_size(); | |
| template <> constexpr int get_quants_size<block_q4_K>() { return (QK_K / 2) * TILE_N; } | |
| template <> constexpr int get_quants_size<block_q5_K>() { return (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N; } | |
| template <> constexpr int get_quants_size<block_q6_K>() { return (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N; } | |
| template <> constexpr int get_quants_size<block_iq4_xs>() { return (QK_K / 2) * TILE_N; } | |
| // used for QKK format | |
| template <typename TB, bool is_acc, | |
| typename std::enable_if<is_type_qkk<TB>::value, int>::type = 0> | |
| inline void scale_C(const int32_t * RESTRICT tile, int32_t * RESTRICT sumi, const void * packed_B, int k, int nr) { | |
| const uint8_t * scales = reinterpret_cast<const uint8_t *>((const char *)packed_B + get_quants_size<TB>()); | |
| const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(scales + k * TILE_N))); | |
| for (int m = 0; m < nr; ++m) { | |
| __m512i vsumi; | |
| if (is_acc) { | |
| vsumi = _mm512_loadu_si512(sumi + m * TILE_N); | |
| } else { | |
| vsumi = _mm512_setzero_si512(); | |
| } | |
| __m512i vtile = _mm512_loadu_si512(tile + m * TILE_N); | |
| vsumi = _mm512_add_epi32(vsumi, _mm512_mullo_epi32(vtile, vscale)); | |
| _mm512_storeu_si512((__m512i *)(sumi + m * TILE_N), vsumi); | |
| } | |
| } | |
| template <typename TA, typename TB, typename TC, int BLOCK_M, int BLOCK_N, int BLOCK_K> | |
| struct tinygemm_kernel_avx { | |
| static void apply(int K, const TA * RESTRICT A, const TB * RESTRICT B, TC * RESTRICT C, int ldc) { | |
| GGML_UNUSED(K); | |
| GGML_UNUSED(A); | |
| GGML_UNUSED(B); | |
| GGML_UNUSED(C); | |
| GGML_UNUSED(ldc); | |
| } | |
| }; | |
| template <int BLOCK_M, int BLOCK_N, int BLOCK_K> | |
| struct tinygemm_kernel_avx<float, ggml_fp16_t, float, BLOCK_M, BLOCK_N, BLOCK_K> { | |
| static void apply(int K, const float * RESTRICT A, const ggml_fp16_t * RESTRICT B, float * RESTRICT C, int ldc) { | |
| constexpr int ROWS = BLOCK_M; | |
| constexpr int COLS = BLOCK_N; | |
| assert(BLOCK_K == 16); | |
| __m512 va; | |
| __m512 vb[COLS]; | |
| __m512 vc[ROWS * COLS]; | |
| auto loadc = [&](int idx) { | |
| vc[idx] = _mm512_setzero_ps(); | |
| }; | |
| Unroll<ROWS * COLS>{}(loadc); | |
| auto compute = [&](int idx, int k) { | |
| // TODO: use `constexpr` here to get rid of interger div | |
| // when upgraded to C++17 | |
| const int row = idx / COLS; | |
| const int col = idx % COLS; | |
| if (col == 0) { | |
| va = _mm512_loadu_ps(A + row * K + k); | |
| } | |
| if (row == 0) { | |
| vb[col] = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(B + col * K + k))); | |
| } | |
| vc[idx] = _mm512_fmadd_ps(va, vb[col], vc[idx]); | |
| }; | |
| for (int k = 0; k < K; k += 16) { | |
| Unroll<ROWS * COLS>{}(compute, k); | |
| } | |
| auto storec = [&](int idx) { | |
| const int row = idx / COLS; | |
| const int col = idx % COLS; | |
| C[row * ldc + col] = _mm512_reduce_add_ps(vc[idx]); | |
| }; | |
| Unroll<ROWS * COLS>{}(storec); | |
| } | |
| }; | |
| // re-organize in the format {NB, KB, TILE_SIZE}: | |
| template<typename TB, int BLOCK_K> | |
| void convert_B_packed_format(void * RESTRICT packed_B, const TB * RESTRICT B, int N, int K, int n_threads) { | |
| const int NB = N / TILE_N; | |
| const int KB = K / BLOCK_K; | |
| const int TILE_SIZE = get_tile_size<TB>(); | |
| // parallel on NB should be enough | |
| parallel_for(n_threads, NB, [&](int begin, int end) { | |
| for (int n = begin; n < end; ++n) { | |
| for (int k = 0; k < KB; ++k) { | |
| int n0 = n * TILE_N; | |
| pack_B((char *)packed_B + PACKED_INDEX(n, k, KB, TILE_SIZE), &B[n0 * KB + k], KB); | |
| } | |
| } | |
| }); | |
| } | |
| template <typename TA, typename TB, typename TC, int BLOCK_M, int BLOCK_N, int BLOCK_K> | |
| struct tinygemm_kernel_vnni {}; | |
| template <int BLOCK_M, int BLOCK_N, int BLOCK_K> | |
| struct tinygemm_kernel_vnni<block_q8_0, block_q4_0, float, BLOCK_M, BLOCK_N, BLOCK_K> { | |
| static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) { | |
| constexpr int COLS = BLOCK_N / 16; | |
| const int TILE_SIZE = TILE_N * sizeof(block_q4_0); | |
| const block_q8_0 * RESTRICT A = static_cast<const block_q8_0 *>(_A); | |
| const char * RESTRICT B = static_cast<const char *>(_B); | |
| __m512i va[8]; | |
| __m512 vc[COLS]; | |
| __m512 vd1; | |
| // sum of offsets, shared across COLS | |
| // | |
| // avx512-vnni does not have `_mm512_dpbssd_epi32`, | |
| // need to transfrom ss to us: | |
| // a * (b - 8) is equavilent to b * a - 8 * a | |
| // s u u u s u s | |
| // | |
| __m512i vcomp; | |
| const __m512i off = _mm512_set1_epi8(8); | |
| const __m512i lowMask = _mm512_set1_epi8(0xF); | |
| auto loadc = [&](int col) { | |
| vc[col] = _mm512_setzero_ps(); | |
| }; | |
| Unroll<COLS>{}(loadc); | |
| auto compute = [&](int col, int i) { | |
| // load a and compute compensation | |
| if (col == 0) { | |
| const int32_t * a_ptr = reinterpret_cast<const int32_t *>(A[0 * KB + i].qs); | |
| vcomp = _mm512_setzero_si512(); | |
| for (int k = 0; k < 8; ++k) { | |
| va[k] = _mm512_set1_epi32(a_ptr[k]); | |
| vcomp = _mm512_dpbusd_epi32(vcomp, off, va[k]); | |
| } | |
| vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].d)); | |
| } | |
| // load b | |
| __m512i vsum = _mm512_setzero_si512(); | |
| const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE); | |
| for (int k = 0; k < 8; k += 2) { | |
| __m512i bytes = _mm512_loadu_si512((const __m512i *)(b_ptr + k * 32)); | |
| __m512i vb0 = _mm512_and_si512(bytes, lowMask); | |
| vsum = _mm512_dpbusd_epi32(vsum, vb0, va[k + 0]); | |
| __m512i vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); | |
| vsum = _mm512_dpbusd_epi32(vsum, vb1, va[k + 1]); | |
| } | |
| const int offset = TILE_N * TILE_K / 2; | |
| const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset))); | |
| vsum = _mm512_sub_epi32(vsum, vcomp); | |
| vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(vsum), _mm512_mul_ps(vd0, vd1), vc[col]); | |
| }; | |
| for (int i = 0; i < KB; ++i) { | |
| Unroll<COLS>{}(compute, i); | |
| } | |
| //store to C | |
| auto storec = [&](int col) { | |
| _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]); | |
| }; | |
| Unroll<COLS>{}(storec); | |
| } | |
| }; | |
| template <int BLOCK_N, int BLOCK_K> | |
| struct tinygemm_kernel_vnni<block_q8_1, block_q4_1, float, 1, BLOCK_N, BLOCK_K> { | |
| static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) { | |
| constexpr int COLS = BLOCK_N / 16; | |
| const int TILE_SIZE = TILE_N * sizeof(block_q4_1); | |
| const block_q8_1 * RESTRICT A = static_cast<const block_q8_1 *>(_A); | |
| const char * RESTRICT B = static_cast<const char *>(_B); | |
| __m512i va[8]; | |
| __m512i vb[8]; | |
| __m512 vc[COLS]; | |
| __m512 vd1, vs1; | |
| const __m512i lowMask = _mm512_set1_epi8(0xF); | |
| auto loadc = [&](int col) { | |
| vc[col] = _mm512_setzero_ps(); | |
| }; | |
| Unroll<COLS>{}(loadc); | |
| auto compute = [&](int col, int i) { | |
| // load a | |
| if (col == 0) { | |
| const int32_t * a_ptr = reinterpret_cast<const int32_t *>(A[0 * KB + i].qs); | |
| for (int k = 0; k < 8; ++k) { | |
| va[k] = _mm512_set1_epi32(a_ptr[k]); | |
| } | |
| vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].d)); | |
| vs1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].s)); | |
| } | |
| // load b | |
| const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE); | |
| for (int k = 0; k < 8; k += 2) { | |
| __m512i bytes = _mm512_loadu_si512((const __m512i *)(b_ptr + k * 32)); | |
| vb[k + 0] = _mm512_and_si512(bytes, lowMask); | |
| vb[k + 1] = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); | |
| } | |
| const int offset = TILE_N * TILE_K / 2; | |
| const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset))); | |
| const __m512 vm0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset + TILE_N * sizeof(ggml_half)))); | |
| __m512i vsum = _mm512_setzero_si512(); | |
| for (int k = 0; k < 8; ++k) { | |
| vsum = _mm512_dpbusd_epi32(vsum, vb[k], va[k]); | |
| } | |
| vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(vsum), _mm512_mul_ps(vd0, vd1), vc[col]); | |
| vc[col] = _mm512_fmadd_ps(vm0, vs1, vc[col]); | |
| }; | |
| for (int i = 0; i < KB; ++i) { | |
| Unroll<COLS>{}(compute, i); | |
| } | |
| //store to C | |
| auto storec = [&](int col) { | |
| _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]); | |
| }; | |
| Unroll<COLS>{}(storec); | |
| } | |
| }; | |
| template <int BLOCK_M, int BLOCK_N, int BLOCK_K> | |
| struct tinygemm_kernel_vnni<block_q8_0, block_q8_0, float, BLOCK_M, BLOCK_N, BLOCK_K> { | |
| static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) { | |
| constexpr int COLS = BLOCK_N / 16; | |
| const int TILE_SIZE = TILE_N * sizeof(block_q8_0) + TILE_N * sizeof(int32_t); | |
| const block_q8_0 * RESTRICT A = static_cast<const block_q8_0 *>(_A); | |
| const char * RESTRICT B = static_cast<const char *>(_B); | |
| __m512i va[8]; | |
| __m512i vb[8]; | |
| __m512 vc[COLS]; | |
| __m512 vd1; | |
| // Notes: s8s8 igemm compensation in avx512-vnni | |
| // change s8s8 to u8s8 with compensate | |
| // a * b = (a + 128) * b - 128 * b | |
| // s s u s u s | |
| // | |
| // (128 * b is pre-computed when packing B to vnni formats) | |
| // | |
| const __m512i off = _mm512_set1_epi8(static_cast<char>(0x80)); | |
| auto loadc = [&](int col) { | |
| vc[col] = _mm512_setzero_ps(); | |
| }; | |
| Unroll<COLS>{}(loadc); | |
| auto compute = [&](int col, int i) { | |
| // load a and add offset 128 | |
| if (col == 0) { | |
| const int32_t * a_ptr = reinterpret_cast<const int32_t *>(A[0 * KB + i].qs); | |
| for (int k = 0; k < 8; ++k) { | |
| va[k] = _mm512_set1_epi32(a_ptr[k]); | |
| va[k] = _mm512_add_epi8(va[k], off); | |
| } | |
| vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].d)); | |
| } | |
| // load b | |
| const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE); | |
| for (int k = 0; k < 8; ++k) { | |
| vb[k] = _mm512_loadu_si512((const __m512i *)(b_ptr + k * 64)); | |
| } | |
| const int offset = TILE_N * TILE_K; | |
| const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset))); | |
| const int offset2 = TILE_N * TILE_K + TILE_N * sizeof(ggml_half); | |
| const __m512i vcomp = _mm512_loadu_si512((const __m512i *)(b_ptr + offset2)); | |
| __m512i vsum = _mm512_setzero_si512(); | |
| for (int k = 0; k < 8; ++k) { | |
| vsum = _mm512_dpbusd_epi32(vsum, va[k], vb[k]); | |
| } | |
| vsum = _mm512_sub_epi32(vsum, vcomp); | |
| vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(vsum), _mm512_mul_ps(vd0, vd1), vc[col]); | |
| }; | |
| for (int i = 0; i < KB; ++i) { | |
| Unroll<COLS>{}(compute, i); | |
| } | |
| //store to C | |
| auto storec = [&](int col) { | |
| _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]); | |
| }; | |
| Unroll<COLS>{}(storec); | |
| } | |
| }; | |
| template <int BLOCK_M, int BLOCK_N, int BLOCK_K> | |
| struct tinygemm_kernel_vnni<block_q8_K, block_q4_K, float, BLOCK_M, BLOCK_N, BLOCK_K> { | |
| static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) { | |
| constexpr int COLS = BLOCK_N / 16; | |
| const int TILE_SIZE = TILE_N * sizeof(block_q4_K) + TILE_N * 4; | |
| const block_q8_K * RESTRICT A = static_cast<const block_q8_K *>(_A); | |
| const char * RESTRICT B = static_cast<const char *>(_B); | |
| // a.qs: 8 groups, 32 bytes each group (m256i) | |
| __m512i va[8]; | |
| // a.bsum: 8 groups, 2 bytes each group (m128i) | |
| __m512i va_bsum; | |
| __m512 vc[COLS]; | |
| __m512 vd1; | |
| // packed_B: | |
| const int offset_scales = (QK_K / 2) * TILE_N; | |
| const int offset_mins = (QK_K / 2) * TILE_N + 8 * TILE_N; | |
| const int offset_d0 = (QK_K / 2) * TILE_N + 16 * TILE_N; | |
| const int offset_dmin = (QK_K / 2) * TILE_N + 16 * TILE_N + TILE_N * sizeof(ggml_half); | |
| const __m512i lowMask = _mm512_set1_epi8(0xF); | |
| auto loadc = [&](int col) { | |
| vc[col] = _mm512_setzero_ps(); | |
| }; | |
| Unroll<COLS>{}(loadc); | |
| // Notes: vnni formats in QK_K | |
| // a) quants vnni format | |
| // int8 {k/4, n, 4}, viewed as 2d {k/4, 4n}, k = 32 | |
| // from {16, 32} to {8, 64} | |
| // | |
| // b) min vnni format | |
| // int16 {k/2, n, 2}, viewed as 2d {k/2, 2n}, k = 8 | |
| // from {16, 8} to {4, 32} | |
| // | |
| auto compute = [&](int col, int i) { | |
| // load a | |
| if (col == 0) { | |
| for (int k_group = 0; k_group < QK_K / 32; ++k_group) { | |
| va[k_group] = _mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)(A[0 * KB + i].qs + k_group * 32))); | |
| } | |
| const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[0 * KB + i].bsums); | |
| const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1)); | |
| va_bsum = _mm512_castsi128_si512(q8s); | |
| vd1 = _mm512_set1_ps(A[0 * KB + i].d); | |
| } | |
| // step 1: accumultate the quants | |
| __m512i acc = _mm512_setzero_si512(); | |
| const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE); | |
| const char * b_qs = b_ptr; | |
| for (int k_group = 0; k_group < QK_K / 32; ++k_group) { | |
| __m512i vsum = _mm512_setzero_si512(); | |
| for (int k = 0; k < 8; k += 2) { | |
| __m512i va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(k + 0), va[k_group]); | |
| __m512i va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(k + 1), va[k_group]); | |
| __m512i bytes = _mm512_loadu_si512((const __m512i *)b_qs); | |
| __m512i vb0 = _mm512_and_si512(bytes, lowMask); | |
| vsum = _mm512_dpbusd_epi32(vsum, vb0, va0); | |
| __m512i vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); | |
| vsum = _mm512_dpbusd_epi32(vsum, vb1, va1); | |
| b_qs += 64; | |
| } | |
| // vacc += scale * (q8 @ q4) | |
| const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(b_ptr + offset_scales + k_group * TILE_N))); | |
| acc = _mm512_add_epi32(acc, _mm512_mullo_epi32(vsum, vscale)); | |
| } | |
| const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_d0))); | |
| vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc), _mm512_mul_ps(vd0, vd1), vc[col]); | |
| // step 2: accumulate the mins | |
| __m512i acc_m = _mm512_setzero_si512(); | |
| for (int k = 0; k < 4; ++k) { | |
| __m512i vmask = _mm512_set1_epi32(k); | |
| __m512i va = _mm512_permutexvar_epi32(vmask, va_bsum); | |
| __m512i vb = _mm512_cvtepi8_epi16(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_mins + k * 32))); | |
| acc_m = _mm512_dpwssds_epi32(acc_m, va, vb); | |
| } | |
| const __m512 vdmin = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_dmin))); | |
| vc[col] = _mm512_fnmadd_ps(_mm512_cvtepi32_ps(acc_m), _mm512_mul_ps(vdmin, vd1), vc[col]); | |
| }; | |
| for (int i = 0; i < KB; ++i) { | |
| Unroll<COLS>{}(compute, i); | |
| } | |
| //store to C | |
| auto storec = [&](int col) { | |
| _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]); | |
| }; | |
| Unroll<COLS>{}(storec); | |
| } | |
| }; | |
| template <int BLOCK_M, int BLOCK_N, int BLOCK_K> | |
| struct tinygemm_kernel_vnni<block_q8_K, block_q5_K, float, BLOCK_M, BLOCK_N, BLOCK_K> { | |
| static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) { | |
| constexpr int COLS = BLOCK_N / 16; | |
| const int TILE_SIZE = TILE_N * sizeof(block_q5_K) + TILE_N * 4; | |
| const block_q8_K * RESTRICT A = static_cast<const block_q8_K *>(_A); | |
| const char * RESTRICT B = static_cast<const char *>(_B); | |
| // a.qs: 8 groups, 32 bytes each group (m256i) | |
| __m512i va[8]; | |
| // a.bsum: 8 groups, 2 bytes each group (m128i) | |
| __m512i va_bsum; | |
| __m512 vc[COLS]; | |
| __m512 vd1; | |
| // packed_B: | |
| const int offset_qh = (QK_K / 2) * TILE_N; | |
| const int offset_scales = (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N; | |
| const int offset_mins = (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N + 8 * TILE_N; | |
| const int offset_d0 = (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N + 16 * TILE_N; | |
| const int offset_dmin = (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N + 16 * TILE_N + TILE_N * sizeof(ggml_half); | |
| const __m512i lowMask = _mm512_set1_epi8(0xF); | |
| auto loadc = [&](int col) { | |
| vc[col] = _mm512_setzero_ps(); | |
| }; | |
| Unroll<COLS>{}(loadc); | |
| // Q5_K and Q4_K shares the same vnni formats, refer to notes above. | |
| auto compute = [&](int col, int i) { | |
| // load a | |
| if (col == 0) { | |
| for (int k_group = 0; k_group < QK_K / 32; ++k_group) { | |
| va[k_group] = _mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)(A[0 * KB + i].qs + k_group * 32))); | |
| } | |
| const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[0 * KB + i].bsums); | |
| const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1)); | |
| va_bsum = _mm512_castsi128_si512(q8s); | |
| vd1 = _mm512_set1_ps(A[0 * KB + i].d); | |
| } | |
| // step 1: accumultate the quants | |
| __m512i acc = _mm512_setzero_si512(); | |
| const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE); | |
| const char * b_qs = b_ptr; | |
| const char * b_qh = b_ptr + offset_qh; | |
| for (int k_group = 0; k_group < QK_K / 32; ++k_group) { | |
| __m512i vsum = _mm512_setzero_si512(); | |
| __m512i hmask0 = _mm512_set1_epi8(0x1); | |
| __m512i hmask1 = _mm512_set1_epi8(0x2); | |
| __m512i hbits = _mm512_loadu_si512((const __m512i *)(b_qh + k_group * 64)); | |
| for (int k = 0; k < 8; k += 2) { | |
| __m512i va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(k + 0), va[k_group]); | |
| __m512i va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(k + 1), va[k_group]); | |
| __m512i bytes = _mm512_loadu_si512((const __m512i *)b_qs); | |
| __m512i vb0 = _mm512_and_si512(bytes, lowMask); | |
| __m512i vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); | |
| __m512i vh0 = _mm512_slli_epi16(_mm512_srli_epi16(_mm512_and_si512(hbits, hmask0), k), 4); | |
| __m512i vh1 = _mm512_slli_epi16(_mm512_srli_epi16(_mm512_and_si512(hbits, hmask1), k + 1), 4); | |
| hmask0 = _mm512_slli_epi16(hmask0, 2); | |
| hmask1 = _mm512_slli_epi16(hmask1, 2); | |
| vb0 = _mm512_add_epi8(vb0, vh0); | |
| vb1 = _mm512_add_epi8(vb1, vh1); | |
| vsum = _mm512_dpbusd_epi32(vsum, vb0, va0); | |
| vsum = _mm512_dpbusd_epi32(vsum, vb1, va1); | |
| b_qs += 64; | |
| } | |
| // vacc += scale * (q8 @ q5) | |
| const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(b_ptr + offset_scales + k_group * TILE_N))); | |
| acc = _mm512_add_epi32(acc, _mm512_mullo_epi32(vsum, vscale)); | |
| } | |
| const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_d0))); | |
| vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc), _mm512_mul_ps(vd0, vd1), vc[col]); | |
| // step 2: accumulate the mins | |
| __m512i acc_m = _mm512_setzero_si512(); | |
| for (int k = 0; k < 4; ++k) { | |
| __m512i vmask = _mm512_set1_epi32(k); | |
| __m512i va = _mm512_permutexvar_epi32(vmask, va_bsum); | |
| __m512i vb = _mm512_cvtepi8_epi16(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_mins + k * 32))); | |
| acc_m = _mm512_dpwssds_epi32(acc_m, va, vb); | |
| } | |
| const __m512 vdmin = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_dmin))); | |
| vc[col] = _mm512_fnmadd_ps(_mm512_cvtepi32_ps(acc_m), _mm512_mul_ps(vdmin, vd1), vc[col]); | |
| }; | |
| for (int i = 0; i < KB; ++i) { | |
| Unroll<COLS>{}(compute, i); | |
| } | |
| //store to C | |
| auto storec = [&](int col) { | |
| _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]); | |
| }; | |
| Unroll<COLS>{}(storec); | |
| } | |
| }; | |
| template <int BLOCK_M, int BLOCK_N, int BLOCK_K> | |
| struct tinygemm_kernel_vnni<block_q8_K, block_q6_K, float, BLOCK_M, BLOCK_N, BLOCK_K> { | |
| static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) { | |
| constexpr int COLS = BLOCK_N / 16; | |
| const int TILE_SIZE = TILE_N * sizeof(block_q6_K); | |
| const block_q8_K * RESTRICT A = static_cast<const block_q8_K *>(_A); | |
| const char * RESTRICT B = static_cast<const char *>(_B); | |
| // load the 256 bytes from A to 4 avx512 vectors | |
| __m512i va[4]; | |
| __m512 vc[COLS]; | |
| __m512 vd1; | |
| // packed_B: | |
| const int offset_qh = (QK_K / 2) * TILE_N; | |
| const int offset_scales = (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N; | |
| const int offset_d0 = (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N + 16 * TILE_N; | |
| // compensation | |
| __m512i vcomp; | |
| const __m512i m32s = _mm512_set1_epi32(32); | |
| const __m512i lowMask = _mm512_set1_epi8(0xF); | |
| auto loadc = [&](int col) { | |
| vc[col] = _mm512_setzero_ps(); | |
| }; | |
| Unroll<COLS>{}(loadc); | |
| auto compute = [&](int col, int i) { | |
| if (col == 0) { | |
| // load a | |
| va[0] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 0)); | |
| va[1] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 64)); | |
| va[2] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 128)); | |
| va[3] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 192)); | |
| const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[0 * KB + i].bsums); | |
| vcomp = _mm512_mullo_epi32(_mm512_cvtepi16_epi32(q8sums), m32s); | |
| vd1 = _mm512_set1_ps(A[0 * KB + i].d); | |
| } | |
| // accmulate the quants | |
| __m512i acc = _mm512_setzero_si512(); | |
| const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE); | |
| const char * b_qs = b_ptr; | |
| const char * b_qh = b_ptr + offset_qh; | |
| int mask = 0; | |
| for (int k_group = 0; k_group < QK_K / 16; ++k_group) { | |
| int r = k_group >> 2; | |
| __m512i va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]); | |
| __m512i va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]); | |
| __m512i vsum = _mm512_setzero_si512(); | |
| __m512i hmask = _mm512_set1_epi8(0x3); | |
| __m512i bytes = _mm512_loadu_si512(b_qs); | |
| __m512i hbits = _mm512_loadu_si512(b_qh); | |
| __m512i vb0 = _mm512_and_si512(bytes, lowMask); | |
| __m512i vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); | |
| __m512i vh0 = _mm512_slli_epi16(_mm512_and_si512(hbits, hmask), 4); | |
| __m512i vh1 = _mm512_slli_epi16(_mm512_and_si512(hbits, _mm512_slli_epi16(hmask, 2)), 2); | |
| vb0 = _mm512_add_epi8(vb0, vh0); | |
| vb1 = _mm512_add_epi8(vb1, vh1); | |
| vsum = _mm512_dpbusd_epi32(vsum, vb0, va0); | |
| vsum = _mm512_dpbusd_epi32(vsum, vb1, va1); | |
| b_qs += 64; | |
| va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]); | |
| va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]); | |
| bytes = _mm512_loadu_si512(b_qs); | |
| vb0 = _mm512_and_si512(bytes, lowMask); | |
| vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); | |
| vh0 = _mm512_and_si512(hbits, _mm512_slli_epi16(hmask, 4)); | |
| vh1 = _mm512_srli_epi16(_mm512_and_si512(hbits, _mm512_slli_epi16(hmask, 6)), 2); | |
| vb0 = _mm512_add_epi8(vb0, vh0); | |
| vb1 = _mm512_add_epi8(vb1, vh1); | |
| vsum = _mm512_dpbusd_epi32(vsum, vb0, va0); | |
| vsum = _mm512_dpbusd_epi32(vsum, vb1, va1); | |
| b_qs += 64; | |
| b_qh += 64; | |
| // B * A - 32 * A | |
| __m512i vmask = _mm512_set1_epi32(k_group); | |
| vsum = _mm512_sub_epi32(vsum, _mm512_permutexvar_epi32(vmask, vcomp)); | |
| // vacc += scale * (q8 @ q6) | |
| const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(b_ptr + offset_scales + k_group * TILE_N))); | |
| acc = _mm512_add_epi32(acc, _mm512_mullo_epi32(vsum, vscale)); | |
| } | |
| const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_d0))); | |
| vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc), _mm512_mul_ps(vd0, vd1), vc[col]); | |
| }; | |
| for (int i = 0; i < KB; ++i) { | |
| Unroll<COLS>{}(compute, i); | |
| } | |
| //store to C | |
| auto storec = [&](int col) { | |
| _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]); | |
| }; | |
| Unroll<COLS>{}(storec); | |
| } | |
| }; | |
| template <int BLOCK_M, int BLOCK_N, int BLOCK_K> | |
| struct tinygemm_kernel_vnni<block_q8_K, block_iq4_xs, float, BLOCK_M, BLOCK_N, BLOCK_K> { | |
| static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) { | |
| constexpr int COLS = BLOCK_N / 16; | |
| const int TILE_SIZE = TILE_N * sizeof(block_iq4_xs) + TILE_N * 2; | |
| const block_q8_K * RESTRICT A = static_cast<const block_q8_K *>(_A); | |
| const char * RESTRICT B = static_cast<const char *>(_B); | |
| // load the 256 bytes from A to 4 avx512 vectors | |
| __m512i va[4]; | |
| __m512 vc[COLS]; | |
| __m512 vd1; | |
| // packed_B: | |
| const int offset_scales = (QK_K / 2) * TILE_N ; | |
| const int offset_d0 = (QK_K / 2) * TILE_N + 8 * TILE_N; | |
| // compensation | |
| __m512i vcomp; | |
| const __m256i m128s = _mm256_set1_epi16(128); | |
| const __m512i lowMask = _mm512_set1_epi8(0xF); | |
| const __m512i values128 = _mm512_set_epi8( | |
| 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127, | |
| 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127, | |
| 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127, | |
| 113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127 | |
| ); | |
| const __m512i off = _mm512_set1_epi8(static_cast<char>(0x80)); | |
| const __m512i values256 = _mm512_add_epi8(values128, off); | |
| auto loadc = [&](int col) { | |
| vc[col] = _mm512_setzero_ps(); | |
| }; | |
| Unroll<COLS>{}(loadc); | |
| auto compute = [&](int col, int i) { | |
| if (col == 0) { | |
| // load a | |
| va[0] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 0)); | |
| va[1] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 64)); | |
| va[2] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 128)); | |
| va[3] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 192)); | |
| // compensation: 128 * A | |
| const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[0 * KB + i].bsums); | |
| vcomp = _mm512_castsi256_si512(_mm256_madd_epi16(q8sums, m128s)); | |
| vd1 = _mm512_set1_ps(A[0 * KB + i].d); | |
| } | |
| // accmulate the quants | |
| __m512i acc = _mm512_setzero_si512(); | |
| const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE); | |
| const char * b_qs = b_ptr; | |
| int mask = 0; | |
| for (int k_group = 0; k_group < QK_K / 32; ++k_group) { | |
| int r = k_group >> 1; | |
| __m512i vmask = _mm512_set1_epi32(k_group); | |
| __m512i vsum = _mm512_setzero_si512(); | |
| for (int k = 0; k < 8; k += 2) { | |
| __m512i va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]); | |
| __m512i va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]); | |
| __m512i bytes = _mm512_loadu_si512(b_qs); | |
| __m512i vb0 = _mm512_shuffle_epi8(values256, _mm512_and_si512(bytes, lowMask)); | |
| __m512i vb1 = _mm512_shuffle_epi8(values256, _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask)); | |
| vsum = _mm512_dpbusd_epi32(vsum, vb0, va0); | |
| vsum = _mm512_dpbusd_epi32(vsum, vb1, va1); | |
| b_qs += 64; | |
| } | |
| // (B + 128) * A - 128 * A | |
| vsum = _mm512_sub_epi32(vsum, _mm512_permutexvar_epi32(vmask, vcomp)); | |
| // vacc += scale * (q8 @ q4) | |
| const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(b_ptr + offset_scales + k_group * TILE_N))); | |
| acc = _mm512_add_epi32(acc, _mm512_mullo_epi32(vsum, vscale)); | |
| } | |
| const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_d0))); | |
| vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc), _mm512_mul_ps(vd0, vd1), vc[col]); | |
| }; | |
| for (int i = 0; i < KB; ++i) { | |
| Unroll<COLS>{}(compute, i); | |
| } | |
| //store to C | |
| auto storec = [&](int col) { | |
| _mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]); | |
| }; | |
| Unroll<COLS>{}(storec); | |
| } | |
| }; | |
| template <typename TA, typename TB, typename TC, int BLOCK_K, | |
| typename std::enable_if<!is_type_qkk<TB>::value, int>::type = 0> | |
| void tinygemm_kernel_amx(int M, int N, int KB, const void * RESTRICT _A, const void * RESTRICT _B, TC * RESTRICT C, int ldc) { | |
| using packed_B_t = packed_B_type<TB>; | |
| const int TILE_SIZE = get_tile_size<TB>(); | |
| const bool need_unpack = do_unpack<TB>::value; | |
| GGML_ASSERT(M <= 2 * TILE_M && N == 2 * TILE_N); | |
| const TA * RESTRICT A = static_cast<const TA *>(_A); | |
| const char * RESTRICT B = static_cast<const char *>(_B); | |
| const int m0 = std::min(M, TILE_M); | |
| const int m1 = std::max(M - TILE_M, 0); | |
| const int lda = KB * sizeof(TA); | |
| //const int ldb = KB * sizeof(TB); | |
| static thread_local packed_B_t Tile0[TILE_N * TILE_K]; | |
| static thread_local packed_B_t Tile1[TILE_N * TILE_K]; | |
| static thread_local int8_t Tile23[TILE_M * TILE_K]; | |
| static thread_local int32_t TileC0[TILE_M * TILE_N * 4]; | |
| static thread_local int32_t TileC1[TILE_M * TILE_N * 4]; | |
| // double buffering C to interleave avx512 and amx | |
| int32_t * C_cur = TileC0; | |
| int32_t * C_pre = TileC1; | |
| auto Tile4 = [&](int32_t * base) { return base; }; | |
| auto Tile5 = [&](int32_t * base) { return base + TILE_M * TILE_N; }; | |
| auto Tile6 = [&](int32_t * base) { return base + 2 * TILE_M * TILE_N; }; | |
| auto Tile7 = [&](int32_t * base) { return base + 3 * TILE_M * TILE_N; }; | |
| if (M == 2 * TILE_M) { | |
| // i = 0 | |
| const char * B_blk0 = B + PACKED_INDEX(0, 0, KB, TILE_SIZE); | |
| const char * B_blk1 = B + PACKED_INDEX(1, 0, KB, TILE_SIZE); | |
| if (need_unpack) { | |
| unpack_B<TB>(Tile0, B_blk0); | |
| _tile_loadd(TMM0, Tile0, TILE_N * VNNI_BLK); | |
| } else { | |
| _tile_loadd(TMM0, B_blk0, TILE_N * VNNI_BLK); | |
| } | |
| _tile_zero(TMM4); | |
| _tile_loadd(TMM2, A[0].qs, lda); | |
| _tile_dpbssd(TMM4, TMM2, TMM0); | |
| _tile_stored(TMM4, Tile4(C_pre), TILE_N * sizeof(int32_t)); | |
| _tile_zero(TMM5); | |
| _tile_loadd(TMM3, A[TILE_M * KB + 0].qs, lda); | |
| _tile_dpbssd(TMM5, TMM3, TMM0); | |
| _tile_stored(TMM5, Tile5(C_pre), TILE_N * sizeof(int32_t)); | |
| if (need_unpack) { | |
| unpack_B<TB>(Tile1, B_blk0); | |
| _tile_loadd(TMM1, Tile1, TILE_N * VNNI_BLK); | |
| } else { | |
| _tile_loadd(TMM1, B_blk1, TILE_N * VNNI_BLK); | |
| } | |
| _tile_zero(TMM6); | |
| _tile_dpbssd(TMM6, TMM2, TMM1); | |
| _tile_stored(TMM6, Tile6(C_pre), TILE_N * sizeof(int32_t)); | |
| _tile_zero(TMM7); | |
| _tile_dpbssd(TMM7, TMM3, TMM1); | |
| _tile_stored(TMM7, Tile7(C_pre), TILE_N * sizeof(int32_t)); | |
| for (int i = 1; i < KB; ++i) { | |
| // index of previous iter | |
| const int ii = i - 1; | |
| const char * B_blk0 = B + PACKED_INDEX(0, i, KB, TILE_SIZE); | |
| const char * B_blk1 = B + PACKED_INDEX(1, i, KB, TILE_SIZE); | |
| GGML_DISPATCH_BOOL(ii > 0, is_acc, [&] { | |
| if (need_unpack) { | |
| unpack_B<TB>(Tile0, B_blk0); | |
| _tile_loadd(TMM0, Tile0, TILE_N * VNNI_BLK); | |
| } else { | |
| _tile_loadd(TMM0, B_blk0, TILE_N * VNNI_BLK); | |
| } | |
| _tile_zero(TMM4); | |
| _tile_loadd(TMM2, A[i].qs, lda); | |
| acc_C<TA, TB, is_acc>::apply(C, ldc, Tile4(C_pre), &A[ii], KB, B + PACKED_INDEX(0, ii, KB, TILE_SIZE), TILE_M); | |
| _tile_dpbssd(TMM4, TMM2, TMM0); | |
| _tile_stored(TMM4, Tile4(C_cur), TILE_N * sizeof(int32_t)); | |
| _tile_zero(TMM5); | |
| _tile_loadd(TMM3, A[TILE_M * KB + i].qs, lda); | |
| acc_C<TA, TB, is_acc>::apply(C + TILE_M * ldc, ldc, Tile5(C_pre), &A[TILE_M * KB + ii], KB, B + PACKED_INDEX(0, ii, KB, TILE_SIZE), TILE_M); | |
| _tile_dpbssd(TMM5, TMM3, TMM0); | |
| _tile_stored(TMM5, Tile5(C_cur), TILE_N * sizeof(int32_t)); | |
| if (need_unpack) { | |
| unpack_B<TB>(Tile1, B_blk1); | |
| _tile_loadd(TMM1, Tile1, TILE_N * VNNI_BLK); | |
| } else { | |
| _tile_loadd(TMM1, B_blk1, TILE_N * VNNI_BLK); | |
| } | |
| _tile_zero(TMM6); | |
| acc_C<TA, TB, is_acc>::apply(C + TILE_N, ldc, Tile6(C_pre), &A[ii], KB, B + PACKED_INDEX(1, ii, KB, TILE_SIZE), TILE_M); | |
| _tile_dpbssd(TMM6, TMM2, TMM1); | |
| _tile_stored(TMM6, Tile6(C_cur), TILE_N * sizeof(int32_t)); | |
| _tile_zero(TMM7); | |
| acc_C<TA, TB, is_acc>::apply(C + TILE_M * ldc + TILE_N, ldc, Tile7(C_pre), &A[TILE_M * KB + ii], KB, B + PACKED_INDEX(1, ii, KB, TILE_SIZE), TILE_M); | |
| _tile_dpbssd(TMM7, TMM3, TMM1); | |
| _tile_stored(TMM7, Tile7(C_cur), TILE_N * sizeof(int32_t)); | |
| std::swap(C_cur, C_pre); | |
| }); | |
| } | |
| // final accumulation | |
| { | |
| int ii = KB - 1; | |
| acc_C<TA, TB, true>::apply(C, ldc, Tile4(C_pre), &A[ii], KB, B + PACKED_INDEX(0, ii, KB, TILE_SIZE), TILE_M); | |
| acc_C<TA, TB, true>::apply(C + TILE_M * ldc, ldc, Tile5(C_pre), &A[TILE_M * KB + ii], KB, B + PACKED_INDEX(0, ii, KB, TILE_SIZE), TILE_M); | |
| acc_C<TA, TB, true>::apply(C + TILE_N, ldc, Tile6(C_pre), &A[ii], KB, B + PACKED_INDEX(1, ii, KB, TILE_SIZE), TILE_M); | |
| acc_C<TA, TB, true>::apply(C + TILE_M * ldc + TILE_N, ldc, Tile7(C_pre), &A[TILE_M * KB + ii], KB, B + PACKED_INDEX(1, ii, KB, TILE_SIZE), TILE_M); | |
| } | |
| } else { | |
| for (int i = 0; i < KB; ++i) { | |
| _tile_zero(TMM4); | |
| _tile_zero(TMM6); | |
| if (m1 != 0) { | |
| _tile_zero(TMM5); | |
| _tile_zero(TMM7); | |
| } | |
| const char * B_blk0 = B + PACKED_INDEX(0, i, KB, TILE_SIZE); | |
| const char * B_blk1 = B + PACKED_INDEX(1, i, KB, TILE_SIZE); | |
| if (need_unpack) { | |
| unpack_B<TB>(Tile0, B_blk0); | |
| _tile_loadd(TMM0, Tile0, TILE_N * VNNI_BLK); | |
| } else { | |
| _tile_loadd(TMM0, B_blk0, TILE_N * VNNI_BLK); | |
| } | |
| if (need_unpack) { | |
| unpack_B<TB>(Tile1, B_blk1); | |
| _tile_loadd(TMM1, Tile1, TILE_N * VNNI_BLK); | |
| } else { | |
| _tile_loadd(TMM1, B_blk1, TILE_N * VNNI_BLK); | |
| } | |
| if (m0 == TILE_M) { | |
| _tile_loadd(TMM2, A[i].qs, lda); | |
| } else { | |
| unpack_A(Tile23, &A[i], KB, m0); | |
| _tile_loadd(TMM2, Tile23, TILE_K); | |
| } | |
| _tile_dpbssd(TMM4, TMM2, TMM0); | |
| _tile_dpbssd(TMM6, TMM2, TMM1); | |
| _tile_stored(TMM4, Tile4(C_cur), TILE_N * sizeof(int32_t)); | |
| _tile_stored(TMM6, Tile6(C_cur), TILE_N * sizeof(int32_t)); | |
| GGML_DISPATCH_BOOL(i > 0, is_acc, [&] { | |
| acc_C<TA, TB, is_acc>::apply(C, ldc, Tile4(C_cur), &A[i], KB, B + PACKED_INDEX(0, i, KB, TILE_SIZE), m0); | |
| acc_C<TA, TB, is_acc>::apply(C + TILE_N, ldc, Tile6(C_cur), &A[i], KB, B + PACKED_INDEX(1, i, KB, TILE_SIZE), m0); | |
| }); | |
| if (m1 != 0) { | |
| unpack_A(Tile23, &A[TILE_M * KB + i], KB, m1); | |
| _tile_loadd(TMM3, Tile23, TILE_K); | |
| _tile_dpbssd(TMM5, TMM3, TMM0); | |
| _tile_dpbssd(TMM7, TMM3, TMM1); | |
| _tile_stored(TMM5, Tile5(C_cur), TILE_N * sizeof(int32_t)); | |
| _tile_stored(TMM7, Tile7(C_cur), TILE_N * sizeof(int32_t)); | |
| GGML_DISPATCH_BOOL(i > 0, is_acc, [&] { | |
| acc_C<TA, TB, is_acc>::apply(C + TILE_M * ldc, ldc, Tile5(C_cur), &A[TILE_M * KB + i], KB, B + PACKED_INDEX(0, i, KB, TILE_SIZE), m1); | |
| acc_C<TA, TB, is_acc>::apply(C + TILE_M * ldc + TILE_N, ldc, Tile7(C_cur), &A[TILE_M * KB + i], KB, B + PACKED_INDEX(1, i, KB, TILE_SIZE), m1); | |
| }); | |
| } | |
| } | |
| } | |
| return; | |
| } | |
| template <typename TA, typename TB, typename TC, int BLOCK_K, | |
| typename std::enable_if<is_type_qkk<TB>::value, int>::type = 0> | |
| void tinygemm_kernel_amx(int M, int N, int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) { | |
| static_assert(std::is_same<TA, block_q8_K>::value); | |
| const int TILE_SIZE = get_tile_size<TB>(); | |
| GGML_ASSERT(M <= 2 * TILE_M && N == 2 * TILE_N); | |
| const TA * RESTRICT A = static_cast<const TA *>(_A); | |
| const char * RESTRICT B = static_cast<const char *>(_B); | |
| const int m0 = std::min(M, TILE_M); | |
| const int m1 = std::max(M - TILE_M, 0); | |
| //const int lda = KB * sizeof(TA); | |
| static thread_local int8_t Tile0[TILE_N * TILE_K]; | |
| static thread_local int8_t Tile1[TILE_N * TILE_K]; | |
| static thread_local int8_t Tile23[TILE_M * TILE_K]; | |
| // mat mul result for each group | |
| static thread_local int32_t Tile4[TILE_M * TILE_N]; | |
| static thread_local int32_t Tile5[TILE_M * TILE_N]; | |
| static thread_local int32_t Tile6[TILE_M * TILE_N]; | |
| static thread_local int32_t Tile7[TILE_M * TILE_N]; | |
| // sum of each QK_K block, contains 8 groups, int32 | |
| static thread_local int32_t Sumi4[TILE_M * TILE_N]; | |
| static thread_local int32_t Sumi5[TILE_M * TILE_N]; | |
| static thread_local int32_t Sumi6[TILE_M * TILE_N]; | |
| static thread_local int32_t Sumi7[TILE_M * TILE_N]; | |
| const int k_group_size = std::is_same<TB, block_q6_K>::value ? 16 : 32; | |
| for (int i = 0; i < KB; ++i) { | |
| // step 1: accumulate the quants across 8 groups, each group with 32 | |
| for (int k = 0; k < QK_K / k_group_size; ++k) { | |
| GGML_DISPATCH_BOOL(k > 0, is_acc, [&] { | |
| _tile_zero(TMM4); | |
| _tile_zero(TMM6); | |
| unpack_B<TB>(Tile0, B + PACKED_INDEX(0, i, KB, TILE_SIZE), k); | |
| _tile_loadd(TMM0, Tile0, TILE_N * VNNI_BLK); | |
| unpack_B<TB>(Tile1, B + PACKED_INDEX(1, i, KB, TILE_SIZE), k); | |
| _tile_loadd(TMM1, Tile1, TILE_N * VNNI_BLK); | |
| unpack_A<TB>(Tile23, &A[i], KB, k, m0); | |
| _tile_loadd(TMM2, Tile23, TILE_K); | |
| _tile_dpbssd(TMM4, TMM2, TMM0); | |
| _tile_dpbssd(TMM6, TMM2, TMM1); | |
| _tile_stored(TMM4, Tile4, TILE_N * sizeof(int32_t)); | |
| _tile_stored(TMM6, Tile6, TILE_N * sizeof(int32_t)); | |
| scale_C<TB, is_acc>(Tile4, Sumi4, B + PACKED_INDEX(0, i, KB, TILE_SIZE), k, m0); | |
| scale_C<TB, is_acc>(Tile6, Sumi6, B + PACKED_INDEX(1, i, KB, TILE_SIZE), k, m0); | |
| if (m1 != 0) { | |
| _tile_zero(TMM5); | |
| _tile_zero(TMM7); | |
| unpack_A<TB>(Tile23, &A[TILE_M * KB + i], KB, k, m1); | |
| _tile_loadd(TMM3, Tile23, TILE_K); | |
| _tile_dpbssd(TMM5, TMM3, TMM0); | |
| _tile_dpbssd(TMM7, TMM3, TMM1); | |
| _tile_stored(TMM5, Tile5, TILE_N * sizeof(int32_t)); | |
| _tile_stored(TMM7, Tile7, TILE_N * sizeof(int32_t)); | |
| scale_C<TB, is_acc>(Tile5, Sumi5, B + PACKED_INDEX(0, i, KB, TILE_SIZE), k, m1); | |
| scale_C<TB, is_acc>(Tile7, Sumi7, B + PACKED_INDEX(1, i, KB, TILE_SIZE), k, m1); | |
| } | |
| }); | |
| } | |
| // step 2: accmulate the mins | |
| GGML_DISPATCH_BOOL(i > 0, is_acc, [&] { | |
| acc_C<TA, TB, is_acc>::apply(C, ldc, Sumi4, &A[i], KB, B + PACKED_INDEX(0, i, KB, TILE_SIZE), m0); | |
| acc_C<TA, TB, is_acc>::apply(C + TILE_N, ldc, Sumi6, &A[i], KB, B + PACKED_INDEX(1, i, KB, TILE_SIZE), m0); | |
| if (m1 != 0) { | |
| acc_C<TA, TB, is_acc>::apply(C + TILE_M * ldc, ldc, Sumi5, &A[TILE_M * KB + i], KB, B + PACKED_INDEX(0, i, KB, TILE_SIZE), m1); | |
| acc_C<TA, TB, is_acc>::apply(C + TILE_M * ldc + TILE_N, ldc, Sumi7, &A[TILE_M * KB + i], KB, B + PACKED_INDEX(1, i, KB, TILE_SIZE), m1); | |
| } | |
| }); | |
| } | |
| return; | |
| } | |
| } // anonymous namespace | |
| // get the packed tensor size for quantized weights | |
| size_t ggml_backend_amx_get_alloc_size(const struct ggml_tensor * tensor) { | |
| const enum ggml_type TYPE = tensor->type; | |
| const int K = tensor->ne[0]; // ne0: in_features | |
| const int N = tensor->ne[1]; // ne1: out_features | |
| auto get_tensor_size = [&] { | |
| size_t row_size_B{0}; | |
| GGML_DISPATCH_QTYPES(TYPE, [&] { | |
| row_size_B = get_row_size<type, blck_size>(K); | |
| }); | |
| return N * row_size_B; | |
| }; | |
| if (qtype_has_amx_kernels(TYPE)) { | |
| return get_tensor_size(); | |
| } else { | |
| // for f16, bf16 we don't do packing | |
| return ggml_nbytes(tensor); | |
| } | |
| } | |
| // pack weight to vnni format | |
| void ggml_backend_amx_convert_weight(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { | |
| size_t alloc_size = ggml_backend_amx_get_alloc_size(tensor); | |
| GGML_ASSERT(alloc_size == size); | |
| const enum ggml_type TYPE = tensor->type; | |
| const int K = tensor->ne[0]; // ne0: in_features | |
| const int N = tensor->ne[1]; // ne1: out_features | |
| // the buffer ctx is not initialized when .set_tensor is called | |
| int n_threads = omp_get_num_threads(); | |
| int n_threads = 1; | |
| GGML_DISPATCH_QTYPES(TYPE, [&] { | |
| convert_B_packed_format<type, blck_size>((void *)((char *)tensor->data + offset), (const type *)data, N, K, n_threads); | |
| }); | |
| } | |
| // NB: mixed dtype gemm with Advanced Matrix Extensions (Intel AMX) | |
| // | |
| // src0: weight in shape of {N, K}, quantized | |
| // src1: input in shape of {M, K}, float32 | |
| // dst: output in shape of {M, N}, float32 | |
| // | |
| // the function performs: dst = src1 @ src0.T | |
| // | |
| void ggml_backend_amx_mul_mat(ggml_backend_amx_context * ctx, struct ggml_tensor * dst) { | |
| struct ggml_tensor * src0 = dst->src[0]; | |
| struct ggml_tensor * src1 = dst->src[1]; | |
| const enum ggml_type TYPE = src0->type; | |
| const int n_threads = ctx->n_threads; | |
| // f16 only has avx512 kernels for now, | |
| // amx kernels will be added once 6th gen xeon is released. | |
| const bool is_floating_type = TYPE == GGML_TYPE_F16; | |
| const int M = dst->ne[1]; | |
| const int N = dst->ne[0]; | |
| const int K = src0->ne[0]; | |
| const int ldc = dst->nb[1] / dst->nb[0]; | |
| if (is_floating_type) { | |
| constexpr int BLOCK_M = 4; | |
| constexpr int BLOCK_N = 6; | |
| const int MB = div_up(M, BLOCK_M); | |
| const int NB = div_up(N, BLOCK_N); | |
| parallel_for(n_threads, MB * NB, [&](int begin, int end) { | |
| GGML_DISPATCH_FLOATING_TYPES(TYPE, [&] { | |
| for (int i = begin; i < end; ++i) { | |
| int mb = i / NB; | |
| int nb = i % NB; | |
| int mb_start = mb * BLOCK_M; | |
| int mb_size = std::min(BLOCK_M, M - mb_start); | |
| int nb_start = nb * BLOCK_N; | |
| int nb_size = std::min(BLOCK_N, N - nb_start); | |
| switch (mb_size << 4 | nb_size) { | |
| case 0x12: LAUNCH_TINYGEMM_KERNEL_AVX(1, 2); break; | |
| case 0x14: LAUNCH_TINYGEMM_KERNEL_AVX(1, 4); break; | |
| case 0x16: LAUNCH_TINYGEMM_KERNEL_AVX(1, 6); break; | |
| case 0x22: LAUNCH_TINYGEMM_KERNEL_AVX(2, 2); break; | |
| case 0x24: LAUNCH_TINYGEMM_KERNEL_AVX(2, 4); break; | |
| case 0x26: LAUNCH_TINYGEMM_KERNEL_AVX(2, 6); break; | |
| case 0x32: LAUNCH_TINYGEMM_KERNEL_AVX(3, 2); break; | |
| case 0x34: LAUNCH_TINYGEMM_KERNEL_AVX(3, 4); break; | |
| case 0x36: LAUNCH_TINYGEMM_KERNEL_AVX(3, 6); break; | |
| case 0x42: LAUNCH_TINYGEMM_KERNEL_AVX(4, 2); break; | |
| case 0x44: LAUNCH_TINYGEMM_KERNEL_AVX(4, 4); break; | |
| case 0x46: LAUNCH_TINYGEMM_KERNEL_AVX(4, 6); break; | |
| default: fprintf(stderr, "Unexpected block size!\n"); | |
| } | |
| } | |
| }); | |
| }); | |
| return; | |
| } | |
| // pointer to work space, used convert A from float to quantized type | |
| void * wdata = nullptr; | |
| //TODO: performance improvement: merge quant A | |
| GGML_DISPATCH_QTYPES(TYPE, [&] { | |
| const size_t row_size_A = K / blck_size * sizeof(vec_dot_type); | |
| const size_t desired_wsize = M * row_size_A; | |
| if (ctx->work_size < desired_wsize) { | |
| ctx->work_data.reset(new char[desired_wsize]); | |
| ctx->work_size = desired_wsize; | |
| } | |
| wdata = ctx->work_data.get(); | |
| // Q4_0, Q4_1, Q8_0 handles 1 TILE_K per blck_size | |
| // Q4_K, Q5_K, Q6_K, IQ4_XS handles 8 TILE_K per blck_size | |
| GGML_ASSERT(TILE_K == blck_size || TILE_K * 8 == blck_size); | |
| const float * A_data = static_cast<const float *>(src1->data); | |
| for (int m = 0; m < M; ++m) { | |
| from_float<vec_dot_type>(A_data + m * K, (char *)wdata + m * row_size_A, K); | |
| } | |
| }); | |
| if (M == 1) { | |
| // MB = 1 and handle 8 tiles in each block | |
| constexpr int kTilesN = 4; | |
| constexpr int BLOCK_N = TILE_N * kTilesN; | |
| const int NB = div_up(N, BLOCK_N); | |
| parallel_for(n_threads, NB, [&](int begin, int end) { | |
| GGML_DISPATCH_QTYPES(TYPE, [&] { | |
| const int KB = K / blck_size; | |
| const int TILE_SIZE = get_tile_size<type>(); | |
| const int row_size_A = KB * sizeof(vec_dot_type); | |
| for (int i = begin; i < end; ++i) { | |
| int nb = i; | |
| int nb_start = nb * BLOCK_N; | |
| int nb_size = std::min(BLOCK_N, N - nb_start); // 32, 64, 96 | |
| switch (nb_size) { | |
| //case 160: LAUNCH_TINYGEMM_KERNEL_VNNI(160); break; | |
| case 128: LAUNCH_TINYGEMM_KERNEL_VNNI(128); break; | |
| case 96: LAUNCH_TINYGEMM_KERNEL_VNNI(96); break; | |
| case 64: LAUNCH_TINYGEMM_KERNEL_VNNI(64); break; | |
| case 32: LAUNCH_TINYGEMM_KERNEL_VNNI(32); break; | |
| default: fprintf(stderr, "Unexpected n block size!\n"); | |
| } | |
| } | |
| }); | |
| }); | |
| return; | |
| } | |
| // handle 4 tiles at a tile | |
| constexpr int BLOCK_M = TILE_M * 2; | |
| constexpr int BLOCK_N = TILE_N * 2; | |
| const int MB = div_up(M, BLOCK_M); | |
| const int NB = div_up(N, BLOCK_N); | |
| parallel_for(n_threads, MB * NB, [&](int begin, int end) { | |
| // init tile config for each thread | |
| ggml_tile_config_init(); | |
| GGML_DISPATCH_QTYPES(TYPE, [&] { | |
| const int KB = K / blck_size; | |
| const int TILE_SIZE = get_tile_size<type>(); | |
| const int row_size_A = KB * sizeof(vec_dot_type); | |
| for (int i = begin; i < end; ++i) { | |
| int mb = i / NB; | |
| int nb = i % NB; | |
| int mb_start = mb * BLOCK_M; | |
| int mb_size = std::min(BLOCK_M, M - mb_start); | |
| int nb_start = nb * BLOCK_N; | |
| int nb_size = BLOCK_N; | |
| tinygemm_kernel_amx<vec_dot_type, type, float, blck_size>( | |
| mb_size, nb_size, KB, | |
| (const char *)wdata + mb_start * row_size_A, | |
| (const char *)src0->data + PACKED_INDEX(nb * 2, 0, KB, TILE_SIZE), | |
| (float *) dst->data + mb_start * N + nb_start, ldc); | |
| } | |
| }); | |
| }); | |
| } | |
| void ggml_backend_amx_mul_mat(ggml_backend_amx_context * ctx, struct ggml_tensor * dst) { | |
| fprintf(stderr, "GGML is not compiled with AMX support!\n"); | |
| GGML_UNUSED(ctx); | |
| GGML_UNUSED(dst); | |
| } | |