Spaces:
Runtime error
Runtime error
Rename modules/app (2).py to modules/wdtagger.py
Browse files- modules/{app (2).py β wdtagger.py} +15 -123
modules/{app (2).py β wdtagger.py}
RENAMED
|
@@ -8,13 +8,6 @@ import onnxruntime as rt
|
|
| 8 |
import pandas as pd
|
| 9 |
from PIL import Image
|
| 10 |
|
| 11 |
-
TITLE = "WaifuDiffusion Tagger"
|
| 12 |
-
DESCRIPTION = """
|
| 13 |
-
Demo for the WaifuDiffusion tagger models
|
| 14 |
-
|
| 15 |
-
Example image by [γ»γβββ](https://www.pixiv.net/en/users/43565085)
|
| 16 |
-
"""
|
| 17 |
-
|
| 18 |
# Dataset v3 series of models:
|
| 19 |
SWINV2_MODEL_DSV3_REPO = "SmilingWolf/wd-swinv2-tagger-v3"
|
| 20 |
CONV_MODEL_DSV3_REPO = "SmilingWolf/wd-convnext-tagger-v3"
|
|
@@ -218,122 +211,21 @@ class Predictor:
|
|
| 218 |
return sorted_general_strings, rating, character_res, general_res
|
| 219 |
|
| 220 |
|
| 221 |
-
|
| 222 |
-
args = parse_args()
|
| 223 |
-
|
| 224 |
-
predictor = Predictor()
|
| 225 |
-
|
| 226 |
-
dropdown_list = [
|
| 227 |
-
SWINV2_MODEL_DSV3_REPO,
|
| 228 |
-
CONV_MODEL_DSV3_REPO,
|
| 229 |
-
VIT_MODEL_DSV3_REPO,
|
| 230 |
-
VIT_LARGE_MODEL_DSV3_REPO,
|
| 231 |
-
EVA02_LARGE_MODEL_DSV3_REPO,
|
| 232 |
-
MOAT_MODEL_DSV2_REPO,
|
| 233 |
-
SWIN_MODEL_DSV2_REPO,
|
| 234 |
-
CONV_MODEL_DSV2_REPO,
|
| 235 |
-
CONV2_MODEL_DSV2_REPO,
|
| 236 |
-
VIT_MODEL_DSV2_REPO,
|
| 237 |
-
]
|
| 238 |
-
|
| 239 |
-
with gr.Blocks(title=TITLE) as demo:
|
| 240 |
-
with gr.Column():
|
| 241 |
-
gr.Markdown(
|
| 242 |
-
value=f"<h1 style='text-align: center; margin-bottom: 1rem'>{TITLE}</h1>"
|
| 243 |
-
)
|
| 244 |
-
gr.Markdown(value=DESCRIPTION)
|
| 245 |
-
with gr.Row():
|
| 246 |
-
with gr.Column(variant="panel"):
|
| 247 |
-
image = gr.Image(type="pil", image_mode="RGBA", label="Input")
|
| 248 |
-
model_repo = gr.Dropdown(
|
| 249 |
-
dropdown_list,
|
| 250 |
-
value=SWINV2_MODEL_DSV3_REPO,
|
| 251 |
-
label="Model",
|
| 252 |
-
)
|
| 253 |
-
with gr.Row():
|
| 254 |
-
general_thresh = gr.Slider(
|
| 255 |
-
0,
|
| 256 |
-
1,
|
| 257 |
-
step=args.score_slider_step,
|
| 258 |
-
value=args.score_general_threshold,
|
| 259 |
-
label="General Tags Threshold",
|
| 260 |
-
scale=3,
|
| 261 |
-
)
|
| 262 |
-
general_mcut_enabled = gr.Checkbox(
|
| 263 |
-
value=False,
|
| 264 |
-
label="Use MCut threshold",
|
| 265 |
-
scale=1,
|
| 266 |
-
)
|
| 267 |
-
with gr.Row():
|
| 268 |
-
character_thresh = gr.Slider(
|
| 269 |
-
0,
|
| 270 |
-
1,
|
| 271 |
-
step=args.score_slider_step,
|
| 272 |
-
value=args.score_character_threshold,
|
| 273 |
-
label="Character Tags Threshold",
|
| 274 |
-
scale=3,
|
| 275 |
-
)
|
| 276 |
-
character_mcut_enabled = gr.Checkbox(
|
| 277 |
-
value=False,
|
| 278 |
-
label="Use MCut threshold",
|
| 279 |
-
scale=1,
|
| 280 |
-
)
|
| 281 |
-
with gr.Row():
|
| 282 |
-
clear = gr.ClearButton(
|
| 283 |
-
components=[
|
| 284 |
-
image,
|
| 285 |
-
model_repo,
|
| 286 |
-
general_thresh,
|
| 287 |
-
general_mcut_enabled,
|
| 288 |
-
character_thresh,
|
| 289 |
-
character_mcut_enabled,
|
| 290 |
-
],
|
| 291 |
-
variant="secondary",
|
| 292 |
-
size="lg",
|
| 293 |
-
)
|
| 294 |
-
submit = gr.Button(value="Submit", variant="primary", size="lg")
|
| 295 |
-
with gr.Column(variant="panel"):
|
| 296 |
-
sorted_general_strings = gr.Textbox(label="Output (string)")
|
| 297 |
-
rating = gr.Label(label="Rating")
|
| 298 |
-
character_res = gr.Label(label="Output (characters)")
|
| 299 |
-
general_res = gr.Label(label="Output (tags)")
|
| 300 |
-
clear.add(
|
| 301 |
-
[
|
| 302 |
-
sorted_general_strings,
|
| 303 |
-
rating,
|
| 304 |
-
character_res,
|
| 305 |
-
general_res,
|
| 306 |
-
]
|
| 307 |
-
)
|
| 308 |
-
|
| 309 |
-
submit.click(
|
| 310 |
-
predictor.predict,
|
| 311 |
-
inputs=[
|
| 312 |
-
image,
|
| 313 |
-
model_repo,
|
| 314 |
-
general_thresh,
|
| 315 |
-
general_mcut_enabled,
|
| 316 |
-
character_thresh,
|
| 317 |
-
character_mcut_enabled,
|
| 318 |
-
],
|
| 319 |
-
outputs=[sorted_general_strings, rating, character_res, general_res],
|
| 320 |
-
)
|
| 321 |
|
| 322 |
-
|
| 323 |
-
[["power.jpg", SWINV2_MODEL_DSV3_REPO, 0.35, False, 0.85, False]],
|
| 324 |
-
inputs=[
|
| 325 |
-
image,
|
| 326 |
-
model_repo,
|
| 327 |
-
general_thresh,
|
| 328 |
-
general_mcut_enabled,
|
| 329 |
-
character_thresh,
|
| 330 |
-
character_mcut_enabled,
|
| 331 |
-
],
|
| 332 |
-
)
|
| 333 |
-
|
| 334 |
-
demo.queue(max_size=10)
|
| 335 |
-
demo.launch()
|
| 336 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
|
| 338 |
-
|
| 339 |
-
main()
|
|
|
|
| 8 |
import pandas as pd
|
| 9 |
from PIL import Image
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
# Dataset v3 series of models:
|
| 12 |
SWINV2_MODEL_DSV3_REPO = "SmilingWolf/wd-swinv2-tagger-v3"
|
| 13 |
CONV_MODEL_DSV3_REPO = "SmilingWolf/wd-convnext-tagger-v3"
|
|
|
|
| 211 |
return sorted_general_strings, rating, character_res, general_res
|
| 212 |
|
| 213 |
|
| 214 |
+
args = parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
|
| 216 |
+
predictor = Predictor()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
+
dropdown_list = [
|
| 219 |
+
SWINV2_MODEL_DSV3_REPO,
|
| 220 |
+
CONV_MODEL_DSV3_REPO,
|
| 221 |
+
VIT_MODEL_DSV3_REPO,
|
| 222 |
+
VIT_LARGE_MODEL_DSV3_REPO,
|
| 223 |
+
EVA02_LARGE_MODEL_DSV3_REPO,
|
| 224 |
+
MOAT_MODEL_DSV2_REPO,
|
| 225 |
+
SWIN_MODEL_DSV2_REPO,
|
| 226 |
+
CONV_MODEL_DSV2_REPO,
|
| 227 |
+
CONV2_MODEL_DSV2_REPO,
|
| 228 |
+
VIT_MODEL_DSV2_REPO,
|
| 229 |
+
]
|
| 230 |
|
| 231 |
+
|
|
|