DamarJati commited on
Commit
28eae20
·
verified ·
1 Parent(s): 789cc44

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -2
app.py CHANGED
@@ -7,8 +7,36 @@ import modules.wdtagger
7
  # Daftar model dan ControlNet
8
  models = ["Model A", "Model B", "Model C"]
9
  vae = ["VAE A", "VAE B", "VAE C"]
10
- controlnet_types = ["Canny", "Depth", "Normal", "Pose"]
11
- schedulers = ["Euler", "LMS", "DDIM"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  # Fungsi placeholder
14
  def load_model_func(checkpoint, vae):
 
7
  # Daftar model dan ControlNet
8
  models = ["Model A", "Model B", "Model C"]
9
  vae = ["VAE A", "VAE B", "VAE C"]
10
+ controlnet_types = [
11
+ "Canny", # Edge detection using Canny algorithm
12
+ "Depth", # Depth estimation from images
13
+ "Normal", # Normal map generation
14
+ "Pose", # Pose estimation
15
+ "Segmentation", # Semantic segmentation
16
+ "Scribble", # Sketch or scribble input
17
+ "OpenPose", # OpenPose-based pose estimation
18
+ "MLSD", # Line segment detection
19
+ "HED", # Holistically-Nested Edge Detection
20
+ "Color", # Colorization input
21
+ "Binary", # Binary mask input
22
+ "Scribble+Edge", # Combination of scribble and edge detection
23
+ "OpenPose+Depth" # Combination of OpenPose and depth estimation
24
+ ]
25
+
26
+ schedulers = [
27
+ "EulerDiscreteScheduler",
28
+ "EulerAncestralDiscreteScheduler",
29
+ "LMSDiscreteScheduler", # Linear Multistep Methods
30
+ "DDIMScheduler", # Denoising Diffusion Implicit Models
31
+ "PNDMScheduler", # Pseudo Numerical Methods for Diffusion Models
32
+ "HeunDiscreteScheduler", # Heun's method
33
+ "DPMSolverMultistepScheduler", # Diffusion Probabilistic Model Solver
34
+ "DDPMScheduler", # Denoising Diffusion Probabilistic Models
35
+ "DPMSolverSinglestepScheduler", # Single-step version of DPM-Solver
36
+ "DPMSolver++MultistepScheduler", # Enhanced version of DPM-Solver
37
+ "IPNDMScheduler", # Improved Pseudo Numerical Methods for Diffusion Models
38
+ ]
39
+
40
 
41
  # Fungsi placeholder
42
  def load_model_func(checkpoint, vae):