Commit
·
00a6def
1
Parent(s):
125cf0c
add color annotated results, use new models
Browse files- app.py +12 -22
- helpers.py +31 -0
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -1,41 +1,31 @@
|
|
| 1 |
import torch
|
| 2 |
import streamlit as st
|
| 3 |
-
from transformers import pipeline
|
| 4 |
from random import choice
|
|
|
|
|
|
|
| 5 |
|
| 6 |
with open("sentences.pt", 'rb') as f:
|
| 7 |
sentences = torch.load(f)
|
| 8 |
sentence = choice(sentences)
|
| 9 |
|
| 10 |
-
baseline_classifier = pipeline(
|
| 11 |
-
model="Dagobert42/mobilebert-uncased-biored-finetuned-ner",
|
| 12 |
-
task="ner",
|
| 13 |
-
aggregation_strategy="simple"
|
| 14 |
-
)
|
| 15 |
-
augmented_classifier = pipeline(
|
| 16 |
-
model="Dagobert42/mobilebert-uncased-biored-augmented-ner",
|
| 17 |
-
task="ner",
|
| 18 |
-
aggregation_strategy="simple"
|
| 19 |
-
)
|
| 20 |
-
|
| 21 |
st.title("Semantic Frame Augmentation")
|
| 22 |
-
st.
|
| 23 |
|
| 24 |
-
st.write("This space uses a
|
| 25 |
augment = st.toggle('Use augmented model for NER', value=False)
|
| 26 |
|
| 27 |
-
if augment:
|
| 28 |
-
st.write("with augmentation:")
|
| 29 |
-
tokens = augmented_classifier(sentence)
|
| 30 |
-
else:
|
| 31 |
-
st.write("without augmentation:")
|
| 32 |
-
tokens = baseline_classifier(sentence)
|
| 33 |
-
|
| 34 |
txt = st.text_area(
|
| 35 |
"Text to analyze",
|
| 36 |
sentence,
|
| 37 |
max_chars=500
|
| 38 |
)
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
st.subheader("Entity analysis:")
|
| 41 |
-
|
|
|
|
| 1 |
import torch
|
| 2 |
import streamlit as st
|
|
|
|
| 3 |
from random import choice
|
| 4 |
+
from annotated_text import annotated_text
|
| 5 |
+
from helpers import *
|
| 6 |
|
| 7 |
with open("sentences.pt", 'rb') as f:
|
| 8 |
sentences = torch.load(f)
|
| 9 |
sentence = choice(sentences)
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
st.title("Semantic Frame Augmentation")
|
| 12 |
+
st.subheader("Analysing difficult low-resource domains with only a handful of examples")
|
| 13 |
|
| 14 |
+
st.write("This space uses a google/mobilebert-uncased model for NER")
|
| 15 |
augment = st.toggle('Use augmented model for NER', value=False)
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
txt = st.text_area(
|
| 18 |
"Text to analyze",
|
| 19 |
sentence,
|
| 20 |
max_chars=500
|
| 21 |
)
|
| 22 |
|
| 23 |
+
if augment:
|
| 24 |
+
st.write("with augmentation:")
|
| 25 |
+
tokens = augmented_classifier(txt)
|
| 26 |
+
else:
|
| 27 |
+
st.write("without augmentation:")
|
| 28 |
+
tokens = baseline_classifier(txt)
|
| 29 |
+
|
| 30 |
st.subheader("Entity analysis:")
|
| 31 |
+
annotated_text(annotate_sentence(sentence, tokens))
|
helpers.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import pipeline
|
| 2 |
+
|
| 3 |
+
baseline_classifier = pipeline("ner",
|
| 4 |
+
model="Dagobert42/biored-finetuned",
|
| 5 |
+
aggregation_strategy="simple"
|
| 6 |
+
)
|
| 7 |
+
augmented_classifier = pipeline("ner",
|
| 8 |
+
model="Dagobert42/biored-augmented",
|
| 9 |
+
aggregation_strategy="simple"
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
def annotate_sentence(sentence, predictions):
|
| 13 |
+
colors = {
|
| 14 |
+
'null': '#bfbfbf', # Pastel gray
|
| 15 |
+
'GeneOrGeneProduct': '#aad4aa', # Pastel green
|
| 16 |
+
'DiseaseOrPhenotypicFeature': '#f8b400', # Pastel orange
|
| 17 |
+
'ChemicalEntity': '#a4c2f4', # Pastel blue
|
| 18 |
+
'OrganismTaxon': '#ffb6c1', # Pastel pink
|
| 19 |
+
'SequenceVariant': '#e2b0ff', # Pastel purple
|
| 20 |
+
'CellLine': '#ffcc99' # Pastel peach
|
| 21 |
+
}
|
| 22 |
+
output = []
|
| 23 |
+
i = 0
|
| 24 |
+
for p in predictions:
|
| 25 |
+
if sentence[i:p['start']] != '':
|
| 26 |
+
output.append(sentence[i:p['start']])
|
| 27 |
+
output.append((p['word'], p['entity_group'], colors[p['entity_group']]))
|
| 28 |
+
i = p['end']
|
| 29 |
+
if sentence[p['end']:]:
|
| 30 |
+
output.append(sentence[p['end']:])
|
| 31 |
+
return output
|
requirements.txt
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
streamlit
|
|
|
|
| 2 |
transformers
|
| 3 |
torch
|
|
|
|
| 1 |
streamlit
|
| 2 |
+
st-annotated-text
|
| 3 |
transformers
|
| 4 |
torch
|