Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	app.py for consuming hsmw serialized model
Browse files
    	
        app.py
    CHANGED
    
    | @@ -1,16 +1,17 @@ | |
| 1 | 
            -
             | 
| 2 | 
             
            import streamlit as st
         | 
| 3 | 
             
            import joblib
         | 
| 4 | 
             
            import numpy as np
         | 
| 5 | 
            -
            import  | 
| 6 | 
             
            import os
         | 
| 7 | 
             
            from openai import OpenAI
         | 
| 8 |  | 
| 9 | 
            -
            # Initialize OpenAI client using  | 
| 10 | 
             
            client = OpenAI(api_key=os.getenv("POCJujitsu"))
         | 
| 11 |  | 
| 12 | 
            -
            # Load serialized  | 
| 13 | 
            -
             | 
|  | |
|  | |
| 14 |  | 
| 15 | 
             
            # Embed query using OpenAI embedding API
         | 
| 16 | 
             
            def embed_query(text):
         | 
| @@ -20,23 +21,13 @@ def embed_query(text): | |
| 20 | 
             
                )
         | 
| 21 | 
             
                return np.array(response.data[0].embedding, dtype=np.float32).reshape(1, -1)
         | 
| 22 |  | 
| 23 | 
            -
            # Semantic search using  | 
| 24 | 
            -
             | 
| 25 | 
            -
            # Semantic search with fallback handling
         | 
| 26 | 
            -
             | 
| 27 | 
            -
            # Semantic search using FAISS - strictly for older API with preallocated arrays
         | 
| 28 | 
             
            def search(query, k=3):
         | 
| 29 | 
             
                query_vec = embed_query(query).astype(np.float32)
         | 
| 30 | 
            -
             | 
| 31 | 
            -
                # Preallocate arrays (required for FAISS IndexFlatL2 in older versions)
         | 
| 32 | 
            -
                distances = np.empty((1, k), dtype=np.float32)
         | 
| 33 | 
            -
                labels = np.empty((1, k), dtype=np.int64)
         | 
| 34 | 
            -
             | 
| 35 | 
            -
                # Call FAISS with all required arguments
         | 
| 36 | 
            -
                index.search(query_vec, k, distances, labels)
         | 
| 37 | 
            -
             | 
| 38 | 
             
                return [chunks[i] for i in labels[0]]
         | 
| 39 |  | 
|  | |
| 40 | 
             
            def chat_no_rag(question):
         | 
| 41 | 
             
                response = client.chat.completions.create(
         | 
| 42 | 
             
                    model="gpt-3.5-turbo",
         | 
| @@ -48,8 +39,12 @@ def chat_no_rag(question): | |
| 48 |  | 
| 49 | 
             
            def chat_with_rag(question, context_chunks):
         | 
| 50 | 
             
                context = "\n".join(context_chunks)
         | 
| 51 | 
            -
                prompt =  | 
| 52 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 53 | 
             
                response = client.chat.completions.create(
         | 
| 54 | 
             
                    model="gpt-3.5-turbo",
         | 
| 55 | 
             
                    messages=[{"role": "user", "content": prompt}],
         | 
|  | |
|  | |
| 1 | 
             
            import streamlit as st
         | 
| 2 | 
             
            import joblib
         | 
| 3 | 
             
            import numpy as np
         | 
| 4 | 
            +
            import hnswlib
         | 
| 5 | 
             
            import os
         | 
| 6 | 
             
            from openai import OpenAI
         | 
| 7 |  | 
| 8 | 
            +
            # Initialize OpenAI client using secret from Hugging Face Spaces
         | 
| 9 | 
             
            client = OpenAI(api_key=os.getenv("POCJujitsu"))
         | 
| 10 |  | 
| 11 | 
            +
            # Load serialized HNSW index and document chunks
         | 
| 12 | 
            +
            model_data = joblib.load("rag_model_hnsw.joblib")
         | 
| 13 | 
            +
            chunks = model_data["chunks"]
         | 
| 14 | 
            +
            index = model_data["index"]
         | 
| 15 |  | 
| 16 | 
             
            # Embed query using OpenAI embedding API
         | 
| 17 | 
             
            def embed_query(text):
         | 
|  | |
| 21 | 
             
                )
         | 
| 22 | 
             
                return np.array(response.data[0].embedding, dtype=np.float32).reshape(1, -1)
         | 
| 23 |  | 
| 24 | 
            +
            # Semantic search using HNSWlib
         | 
|  | |
|  | |
|  | |
|  | |
| 25 | 
             
            def search(query, k=3):
         | 
| 26 | 
             
                query_vec = embed_query(query).astype(np.float32)
         | 
| 27 | 
            +
                labels, distances = index.knn_query(query_vec, k=k)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 28 | 
             
                return [chunks[i] for i in labels[0]]
         | 
| 29 |  | 
| 30 | 
            +
            # Chat modes
         | 
| 31 | 
             
            def chat_no_rag(question):
         | 
| 32 | 
             
                response = client.chat.completions.create(
         | 
| 33 | 
             
                    model="gpt-3.5-turbo",
         | 
|  | |
| 39 |  | 
| 40 | 
             
            def chat_with_rag(question, context_chunks):
         | 
| 41 | 
             
                context = "\n".join(context_chunks)
         | 
| 42 | 
            +
                prompt = (
         | 
| 43 | 
            +
                    "Usa el siguiente contexto como referencia para responder la pregunta. "
         | 
| 44 | 
            +
                    "Puedes complementar con tus propios conocimientos si es necesario.\n\n"
         | 
| 45 | 
            +
                    f"Contexto:\n{context}\n\n"
         | 
| 46 | 
            +
                    f"Pregunta: {question}\nRespuesta:"
         | 
| 47 | 
            +
                )
         | 
| 48 | 
             
                response = client.chat.completions.create(
         | 
| 49 | 
             
                    model="gpt-3.5-turbo",
         | 
| 50 | 
             
                    messages=[{"role": "user", "content": prompt}],
         |