Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	
		daniel.diaz
		
	commited on
		
		
					Commit 
							
							Β·
						
						a735235
	
1
								Parent(s):
							
							2abae21
								
Merge branch 'main' of https://huggingface.co/spaces/DD8943/JuJitsuPOC
Browse files- .DS_Store +0 -0
- models/.DS_Store +0 -0
- models/all-MiniLM-L6-v2/1_Pooling/config.json +9 -0
- models/all-MiniLM-L6-v2/README.md +173 -0
- config.json β models/all-MiniLM-L6-v2/config.json +0 -0
- config_sentence_transformers.json β models/all-MiniLM-L6-v2/config_sentence_transformers.json +0 -0
- model.safetensors β models/all-MiniLM-L6-v2/model.safetensors +0 -0
- modules.json β models/all-MiniLM-L6-v2/modules.json +0 -0
- sentence_bert_config.json β models/all-MiniLM-L6-v2/sentence_bert_config.json +0 -0
- special_tokens_map.json β models/all-MiniLM-L6-v2/special_tokens_map.json +0 -0
- tokenizer.json β models/all-MiniLM-L6-v2/tokenizer.json +0 -0
- tokenizer_config.json β models/all-MiniLM-L6-v2/tokenizer_config.json +0 -0
- vocab.txt β models/all-MiniLM-L6-v2/vocab.txt +0 -0
    	
        .DS_Store
    ADDED
    
    | Binary file (6.15 kB). View file | 
|  | 
    	
        models/.DS_Store
    ADDED
    
    | Binary file (6.15 kB). View file | 
|  | 
    	
        models/all-MiniLM-L6-v2/1_Pooling/config.json
    ADDED
    
    | @@ -0,0 +1,9 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "word_embedding_dimension": 384,
         | 
| 3 | 
            +
              "pooling_mode_cls_token": false,
         | 
| 4 | 
            +
              "pooling_mode_mean_tokens": true,
         | 
| 5 | 
            +
              "pooling_mode_max_tokens": false,
         | 
| 6 | 
            +
              "pooling_mode_mean_sqrt_len_tokens": false,
         | 
| 7 | 
            +
              "pooling_mode_weightedmean_tokens": false,
         | 
| 8 | 
            +
              "pooling_mode_lasttoken": false
         | 
| 9 | 
            +
            }
         | 
    	
        models/all-MiniLM-L6-v2/README.md
    ADDED
    
    | @@ -0,0 +1,173 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            language: en
         | 
| 3 | 
            +
            license: apache-2.0
         | 
| 4 | 
            +
            library_name: sentence-transformers
         | 
| 5 | 
            +
            tags:
         | 
| 6 | 
            +
            - sentence-transformers
         | 
| 7 | 
            +
            - feature-extraction
         | 
| 8 | 
            +
            - sentence-similarity
         | 
| 9 | 
            +
            - transformers
         | 
| 10 | 
            +
            datasets:
         | 
| 11 | 
            +
            - s2orc
         | 
| 12 | 
            +
            - flax-sentence-embeddings/stackexchange_xml
         | 
| 13 | 
            +
            - ms_marco
         | 
| 14 | 
            +
            - gooaq
         | 
| 15 | 
            +
            - yahoo_answers_topics
         | 
| 16 | 
            +
            - code_search_net
         | 
| 17 | 
            +
            - search_qa
         | 
| 18 | 
            +
            - eli5
         | 
| 19 | 
            +
            - snli
         | 
| 20 | 
            +
            - multi_nli
         | 
| 21 | 
            +
            - wikihow
         | 
| 22 | 
            +
            - natural_questions
         | 
| 23 | 
            +
            - trivia_qa
         | 
| 24 | 
            +
            - embedding-data/sentence-compression
         | 
| 25 | 
            +
            - embedding-data/flickr30k-captions
         | 
| 26 | 
            +
            - embedding-data/altlex
         | 
| 27 | 
            +
            - embedding-data/simple-wiki
         | 
| 28 | 
            +
            - embedding-data/QQP
         | 
| 29 | 
            +
            - embedding-data/SPECTER
         | 
| 30 | 
            +
            - embedding-data/PAQ_pairs
         | 
| 31 | 
            +
            - embedding-data/WikiAnswers
         | 
| 32 | 
            +
            pipeline_tag: sentence-similarity
         | 
| 33 | 
            +
            ---
         | 
| 34 | 
            +
             | 
| 35 | 
            +
             | 
| 36 | 
            +
            # all-MiniLM-L6-v2
         | 
| 37 | 
            +
            This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            ## Usage (Sentence-Transformers)
         | 
| 40 | 
            +
            Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            ```
         | 
| 43 | 
            +
            pip install -U sentence-transformers
         | 
| 44 | 
            +
            ```
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            Then you can use the model like this:
         | 
| 47 | 
            +
            ```python
         | 
| 48 | 
            +
            from sentence_transformers import SentenceTransformer
         | 
| 49 | 
            +
            sentences = ["This is an example sentence", "Each sentence is converted"]
         | 
| 50 | 
            +
             | 
| 51 | 
            +
            model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
         | 
| 52 | 
            +
            embeddings = model.encode(sentences)
         | 
| 53 | 
            +
            print(embeddings)
         | 
| 54 | 
            +
            ```
         | 
| 55 | 
            +
             | 
| 56 | 
            +
            ## Usage (HuggingFace Transformers)
         | 
| 57 | 
            +
            Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
         | 
| 58 | 
            +
             | 
| 59 | 
            +
            ```python
         | 
| 60 | 
            +
            from transformers import AutoTokenizer, AutoModel
         | 
| 61 | 
            +
            import torch
         | 
| 62 | 
            +
            import torch.nn.functional as F
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            #Mean Pooling - Take attention mask into account for correct averaging
         | 
| 65 | 
            +
            def mean_pooling(model_output, attention_mask):
         | 
| 66 | 
            +
                token_embeddings = model_output[0] #First element of model_output contains all token embeddings
         | 
| 67 | 
            +
                input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
         | 
| 68 | 
            +
                return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
         | 
| 69 | 
            +
             | 
| 70 | 
            +
             | 
| 71 | 
            +
            # Sentences we want sentence embeddings for
         | 
| 72 | 
            +
            sentences = ['This is an example sentence', 'Each sentence is converted']
         | 
| 73 | 
            +
             | 
| 74 | 
            +
            # Load model from HuggingFace Hub
         | 
| 75 | 
            +
            tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
         | 
| 76 | 
            +
            model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
         | 
| 77 | 
            +
             | 
| 78 | 
            +
            # Tokenize sentences
         | 
| 79 | 
            +
            encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
         | 
| 80 | 
            +
             | 
| 81 | 
            +
            # Compute token embeddings
         | 
| 82 | 
            +
            with torch.no_grad():
         | 
| 83 | 
            +
                model_output = model(**encoded_input)
         | 
| 84 | 
            +
             | 
| 85 | 
            +
            # Perform pooling
         | 
| 86 | 
            +
            sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
         | 
| 87 | 
            +
             | 
| 88 | 
            +
            # Normalize embeddings
         | 
| 89 | 
            +
            sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
         | 
| 90 | 
            +
             | 
| 91 | 
            +
            print("Sentence embeddings:")
         | 
| 92 | 
            +
            print(sentence_embeddings)
         | 
| 93 | 
            +
            ```
         | 
| 94 | 
            +
             | 
| 95 | 
            +
            ------
         | 
| 96 | 
            +
             | 
| 97 | 
            +
            ## Background
         | 
| 98 | 
            +
             | 
| 99 | 
            +
            The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised 
         | 
| 100 | 
            +
            contrastive learning objective. We used the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a 
         | 
| 101 | 
            +
            1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
         | 
| 102 | 
            +
             | 
| 103 | 
            +
            We developed this model during the 
         | 
| 104 | 
            +
            [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), 
         | 
| 105 | 
            +
            organized by Hugging Face. We developed this model as part of the project:
         | 
| 106 | 
            +
            [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks.
         | 
| 107 | 
            +
             | 
| 108 | 
            +
            ## Intended uses
         | 
| 109 | 
            +
             | 
| 110 | 
            +
            Our model is intended to be used as a sentence and short paragraph encoder. Given an input text, it outputs a vector which captures 
         | 
| 111 | 
            +
            the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.
         | 
| 112 | 
            +
             | 
| 113 | 
            +
            By default, input text longer than 256 word pieces is truncated.
         | 
| 114 | 
            +
             | 
| 115 | 
            +
             | 
| 116 | 
            +
            ## Training procedure
         | 
| 117 | 
            +
             | 
| 118 | 
            +
            ### Pre-training 
         | 
| 119 | 
            +
             | 
| 120 | 
            +
            We use the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model. Please refer to the model card for more detailed information about the pre-training procedure.
         | 
| 121 | 
            +
             | 
| 122 | 
            +
            ### Fine-tuning 
         | 
| 123 | 
            +
             | 
| 124 | 
            +
            We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch.
         | 
| 125 | 
            +
            We then apply the cross entropy loss by comparing with true pairs.
         | 
| 126 | 
            +
             | 
| 127 | 
            +
            #### Hyper parameters
         | 
| 128 | 
            +
             | 
| 129 | 
            +
            We trained our model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core).
         | 
| 130 | 
            +
            We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with
         | 
| 131 | 
            +
            a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`.
         | 
| 132 | 
            +
             | 
| 133 | 
            +
            #### Training data
         | 
| 134 | 
            +
             | 
| 135 | 
            +
            We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.
         | 
| 136 | 
            +
            We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file.
         | 
| 137 | 
            +
             | 
| 138 | 
            +
             | 
| 139 | 
            +
            | Dataset                                                  | Paper                                    | Number of training tuples  |
         | 
| 140 | 
            +
            |--------------------------------------------------------|:----------------------------------------:|:--------------------------:|
         | 
| 141 | 
            +
            | [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 |
         | 
| 142 | 
            +
            | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 |
         | 
| 143 | 
            +
            | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 |
         | 
| 144 | 
            +
            | [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 |
         | 
| 145 | 
            +
            | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 |
         | 
| 146 | 
            +
            | [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 |
         | 
| 147 | 
            +
            | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs  | - | 25,316,456 |
         | 
| 148 | 
            +
            | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs  | - | 21,396,559 |
         | 
| 149 | 
            +
            | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs  | - | 21,396,559 |
         | 
| 150 | 
            +
            | [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 |
         | 
| 151 | 
            +
            | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 |
         | 
| 152 | 
            +
            | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 |
         | 
| 153 | 
            +
            | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 |
         | 
| 154 | 
            +
            | [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395|
         | 
| 155 | 
            +
            | [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 |
         | 
| 156 | 
            +
            | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 |
         | 
| 157 | 
            +
            | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 |
         | 
| 158 | 
            +
            | [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 |
         | 
| 159 | 
            +
            | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 |
         | 
| 160 | 
            +
            | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 |
         | 
| 161 | 
            +
            | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 |
         | 
| 162 | 
            +
            | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | 
         | 
| 163 | 
            +
            | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 |
         | 
| 164 | 
            +
            | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 |
         | 
| 165 | 
            +
            | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 |
         | 
| 166 | 
            +
            | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 |
         | 
| 167 | 
            +
            | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 |
         | 
| 168 | 
            +
            | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 |
         | 
| 169 | 
            +
            | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 |
         | 
| 170 | 
            +
            | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
         | 
| 171 | 
            +
            | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 |
         | 
| 172 | 
            +
            | [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 |
         | 
| 173 | 
            +
            | **Total** | | **1,170,060,424** |
         | 
    	
        config.json β models/all-MiniLM-L6-v2/config.json
    RENAMED
    
    | 
            File without changes
         | 
    	
        config_sentence_transformers.json β models/all-MiniLM-L6-v2/config_sentence_transformers.json
    RENAMED
    
    | 
            File without changes
         | 
    	
        model.safetensors β models/all-MiniLM-L6-v2/model.safetensors
    RENAMED
    
    | 
            File without changes
         | 
    	
        modules.json β models/all-MiniLM-L6-v2/modules.json
    RENAMED
    
    | 
            File without changes
         | 
    	
        sentence_bert_config.json β models/all-MiniLM-L6-v2/sentence_bert_config.json
    RENAMED
    
    | 
            File without changes
         | 
    	
        special_tokens_map.json β models/all-MiniLM-L6-v2/special_tokens_map.json
    RENAMED
    
    | 
            File without changes
         | 
    	
        tokenizer.json β models/all-MiniLM-L6-v2/tokenizer.json
    RENAMED
    
    | 
            File without changes
         | 
    	
        tokenizer_config.json β models/all-MiniLM-L6-v2/tokenizer_config.json
    RENAMED
    
    | 
            File without changes
         | 
    	
        vocab.txt β models/all-MiniLM-L6-v2/vocab.txt
    RENAMED
    
    | 
            File without changes
         |