VITS / app.py
DD0101's picture
Update app.py
2309063 verified
raw
history blame
1.93 kB
import os
import matplotlib.pyplot as plt
import os
import json
import math
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
import commons
import utils
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
from scipy.io.wavfile import write
import streamlit as st
os.system('cd monotonic_align')
os.system('python setup.py build_ext --inplace')
os.system('cd ..')
os.system("gdown 'https://drive.google.com/uc?id=1q86w74Ygw2hNzYP9cWkeClGT5X25PvBT'")
def get_text(text, hps):
text_norm = text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
hps = utils.get_hparams_from_file("./configs/ljs_base.json")
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model)
_ = net_g.eval()
_ = utils.load_checkpoint("pretrained_ljs.pth", net_g, None)
st.title("VITS Text-to-Speech Demo")
# Input text box for user to enter text
text_input = st.text_input("Enter text to convert to speech", value="Hello world")
if st.button("Generate Speech"):
# Convert the text to the appropriate format (e.g., phoneme or character representation)
stn_tst = get_text(text_input, hps)
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.float().numpy()
# Use hps.data.sampling_rate for playing the audio
st.audio(audio, format="audio/wav", sample_rate=hps.data.sampling_rate)