Spaces:
Runtime error
Runtime error
Changes in preprocess() method from class MyPipeline (According to Huggingfaces updates)
Browse files
app.py
CHANGED
|
@@ -11,20 +11,24 @@ os.mkdir('/home/user/app/vncorenlp')
|
|
| 11 |
py_vncorenlp.download_model(save_dir='/home/user/app/vncorenlp')
|
| 12 |
rdrsegmenter = py_vncorenlp.VnCoreNLP(annotators=["wseg"], save_dir='/home/user/app/vncorenlp')
|
| 13 |
|
|
|
|
| 14 |
class MyPipeline(TokenClassificationPipeline):
|
| 15 |
-
def preprocess(self, sentence, offset_mapping=None):
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
sentence,
|
| 20 |
return_tensors=self.framework,
|
| 21 |
truncation=truncation,
|
| 22 |
return_special_tokens_mask=True,
|
| 23 |
return_offsets_mapping=self.tokenizer.is_fast,
|
|
|
|
| 24 |
)
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
-
length = len(
|
| 28 |
tokens = self.tokenizer.tokenize(sentence)
|
| 29 |
seek = 0
|
| 30 |
offset_mapping_list = [[(0, 0)]]
|
|
@@ -37,15 +41,19 @@ class MyPipeline(TokenClassificationPipeline):
|
|
| 37 |
seek += len(tokens[i]) + 1
|
| 38 |
offset_mapping_list[0].append((0, 0))
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
|
| 47 |
|
| 48 |
-
model_checkpoint = "DD0101/disfluency-
|
| 49 |
|
| 50 |
my_classifier = pipeline(
|
| 51 |
"token-classification", model=model_checkpoint, aggregation_strategy="simple", pipeline_class=MyPipeline)
|
|
|
|
| 11 |
py_vncorenlp.download_model(save_dir='/home/user/app/vncorenlp')
|
| 12 |
rdrsegmenter = py_vncorenlp.VnCoreNLP(annotators=["wseg"], save_dir='/home/user/app/vncorenlp')
|
| 13 |
|
| 14 |
+
# I have to make some changes to the preprocess() method since they (Hugging Face) had changed some attributes
|
| 15 |
class MyPipeline(TokenClassificationPipeline):
|
| 16 |
+
def preprocess(self, sentence, offset_mapping=None, **preprocess_params):
|
| 17 |
+
tokenizer_params = preprocess_params.pop("tokenizer_params", {})
|
| 18 |
+
truncation = True if self.tokenizer.model_max_length and self.tokenizer.model_max_length > 0 else False
|
| 19 |
+
inputs = self.tokenizer(
|
| 20 |
sentence,
|
| 21 |
return_tensors=self.framework,
|
| 22 |
truncation=truncation,
|
| 23 |
return_special_tokens_mask=True,
|
| 24 |
return_offsets_mapping=self.tokenizer.is_fast,
|
| 25 |
+
**tokenizer_params,
|
| 26 |
)
|
| 27 |
+
inputs.pop("overflow_to_sample_mapping", None)
|
| 28 |
+
num_chunks = len(inputs["input_ids"])
|
| 29 |
|
| 30 |
+
# Override preprocess method with these offset_mapping lines
|
| 31 |
+
length = len(inputs['input_ids'][0]) - 2
|
| 32 |
tokens = self.tokenizer.tokenize(sentence)
|
| 33 |
seek = 0
|
| 34 |
offset_mapping_list = [[(0, 0)]]
|
|
|
|
| 41 |
seek += len(tokens[i]) + 1
|
| 42 |
offset_mapping_list[0].append((0, 0))
|
| 43 |
|
| 44 |
+
for i in range(num_chunks):
|
| 45 |
+
if self.framework == "tf":
|
| 46 |
+
model_inputs = {k: tf.expand_dims(v[i], 0) for k, v in inputs.items()}
|
| 47 |
+
else:
|
| 48 |
+
model_inputs = {k: v[i].unsqueeze(0) for k, v in inputs.items()}
|
| 49 |
+
|
| 50 |
+
model_inputs['offset_mapping'] = offset_mapping_list
|
| 51 |
+
model_inputs["sentence"] = sentence if i == 0 else None
|
| 52 |
+
model_inputs["is_last"] = i == num_chunks - 1
|
| 53 |
|
| 54 |
+
yield model_inputs
|
| 55 |
|
| 56 |
+
model_checkpoint = "DD0101/disfluency-large"
|
| 57 |
|
| 58 |
my_classifier = pipeline(
|
| 59 |
"token-classification", model=model_checkpoint, aggregation_strategy="simple", pipeline_class=MyPipeline)
|