Spaces:
Sleeping
Sleeping
File size: 9,297 Bytes
2846c4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
from __future__ import annotations
import os, json, uuid
from datetime import datetime
from typing import List, Dict, Any
import gradio as gr
import pandas as pd
from app.storage import init_db, insert_variant, upsert_campaign, get_variant, get_metrics, get_campaign_value_per_conversion, log_event
from app.bandit import ThompsonBandit
from app.forecast import SeasonalityModel
from app.compliance import rule_based_check, llm_check_and_fix
from app.openai_client import openai_chat
# 初期化
init_db()
_seasonality_cache: Dict[str, SeasonalityModel] = {}
GEN_SYSTEM = """
あなたは日本語広告コピーのプロフェッショナルコピーライターです。
出力はJSON配列(各要素は{\"headline\":..., \"body\":...})のみで返してください。句読点や記号は自然に。誇大・断定は避け、事実ベースで魅力を伝えます。
"""
GEN_USER_TEMPLATE = """
ブランド: {brand}
商品/サービス: {product}
想定ターゲット: {target}
トーン: {tone}
制約: {constraints}
生成本数: {k}
条件:
- 1本あたり見出し(全角15-25字目安)+ 本文(全角40-90字目安)
- 禁止: 医薬効能の断定、100%、永久、即効、根拠のない数値
- CTAは自然に
"""
def _seasonal(campaign_id: str) -> SeasonalityModel:
if campaign_id not in _seasonality_cache:
m = SeasonalityModel(campaign_id)
try:
m.fit()
except Exception:
pass
_seasonality_cache[campaign_id] = m
return _seasonality_cache[campaign_id]
async def ui_generate(campaign_id: str, brand: str, product: str, target: str, tone: str, k_variants: int,
ng_words: str, value_per_conversion: float):
constraints = {"ng_words": [w.strip() for w in ng_words.splitlines() if w.strip()]} if ng_words else {}
upsert_campaign(
campaign_id, brand, product, target, tone, "ja", constraints, value_per_conversion
)
user = GEN_USER_TEMPLATE.format(
brand=brand,
product=product,
target=target,
tone=tone,
constraints=json.dumps(constraints, ensure_ascii=False),
k=k_variants,
)
raw = await openai_chat([
{"role": "system", "content": GEN_SYSTEM},
{"role": "user", "content": user}
], temperature=0.8, max_tokens=800)
try:
items = json.loads(raw)
assert isinstance(items, list)
except Exception:
raise gr.Error("LLM出力のJSONパースに失敗しました。プロンプトを短くするか、再実行してください。")
rows = []
for it in items[:k_variants]:
headline = (it.get("headline") or "").strip()
body = (it.get("body") or "").strip()
text = f"{headline}\n{body}".strip()
vid = str(uuid.uuid4())[:8]
ok_rule, bads = rule_based_check(text, (constraints or {}).get("ng_words"))
rejection_reason = None
status = "approved"
if not ok_rule:
ok_llm, reasons, fixed = llm_check_and_fix(text)
if ok_llm:
text = fixed or text
else:
status = "rejected"
rejection_reason = "; ".join(bads + reasons)
else:
ok_llm, reasons, fixed = llm_check_and_fix(text)
if not ok_llm:
text = fixed or text
insert_variant(campaign_id, vid, text, status, rejection_reason)
rows.append({
"variant_id": vid,
"status": status,
"rejection_reason": rejection_reason or "",
"text": text,
})
df = pd.DataFrame(rows, columns=["variant_id", "status", "rejection_reason", "text"]) if rows else pd.DataFrame()
return df
def ui_serve(campaign_id: str, hour: int, segment: str):
ctx = {"hour": int(hour), "segment": (segment or "").strip() or None}
m = _seasonal(campaign_id)
bandit = ThompsonBandit(campaign_id)
vid, _ = bandit.sample_arm(ctx, seasonal_fn=m.expected_ctr)
if not vid:
raise gr.Error("配信可能なバリアントがありません。まずは Generate してください。")
row = get_variant(campaign_id, vid)
if not row:
raise gr.Error("バリアントが見つかりません。")
# impression 記録
log_event(campaign_id, vid, "impression", datetime.utcnow().isoformat(), None)
ThompsonBandit.update_with_event(campaign_id, vid, "impression")
return vid, row["text"]
def ui_feedback(campaign_id: str, variant_id: str, event_type: str):
if not variant_id:
raise gr.Error("先に Serve してください。")
log_event(campaign_id, variant_id, event_type, datetime.utcnow().isoformat(), None)
ThompsonBandit.update_with_event(campaign_id, variant_id, event_type)
return f"{event_type} を記録しました。"
def ui_report(campaign_id: str):
mets = get_metrics(campaign_id)
vpc = get_campaign_value_per_conversion(campaign_id)
rows = []
for r in mets:
imp = int(r["impressions"]); clk = int(r["clicks"]); conv = int(r["conversions"])
ctr = (clk / imp) if imp > 0 else 0.0
cvr = (conv / clk) if clk > 0 else 0.0
ev = ctr * cvr * vpc
rows.append({
"variant_id": r["variant_id"],
"impressions": imp,
"clicks": clk,
"conversions": conv,
"ctr": round(ctr, 4),
"cvr": round(cvr, 4),
"expected_value": round(ev, 6),
})
df = pd.DataFrame(rows, columns=["variant_id","impressions","clicks","conversions","ctr","cvr","expected_value"]) if rows else pd.DataFrame()
return df
def ui_check(text: str):
ok_rule, bads = rule_based_check(text, [])
ok_llm, reasons, fixed = llm_check_and_fix(text)
status = "pass" if (ok_rule and ok_llm) else "needs_fix"
fixed_text = fixed or (text if status == "pass" else "")
reasons_joined = "; ".join(bads + reasons)
return status, reasons_joined, fixed_text
with gr.Blocks(title="AdCopy MAB Optimizer", fill_height=True) as demo:
gr.Markdown("""
# AdCopy MAB Optimizer(HF UI)
**広告コピー自動生成 → Thompson Sampling(CTR×CVR) → レポート** を、Hugging Face Spaces 上で完結。
- LLM: OpenAI (`OPENAI_API_KEY` を Space Secrets に設定)
- DB: SQLite(`data/data.db`)
- 季節性: Prophet/NeuralProphet(なければ簡易ヒューリスティック)
""")
with gr.Tab("1) Generate"):
with gr.Row():
campaign_id = gr.Textbox(label="campaign_id", value="cmp-demo", scale=1)
k_variants = gr.Slider(1, 10, value=5, step=1, label="生成本数")
value_per_conv = gr.Number(value=5000, label="value_per_conversion")
brand = gr.Textbox(label="ブランド", value="SFM")
product = gr.Textbox(label="商品/サービス", value="HbA1c測定アプリ")
target = gr.Textbox(label="ターゲット", value="30-50代の健康意識が高い層")
tone = gr.Textbox(label="トーン", value="エビデンス重視で安心感")
ng_words = gr.Textbox(label="NGワード(改行区切り)", value="治る\n奇跡")
btn_gen = gr.Button("広告案を生成&審査&保存")
table_gen = gr.Dataframe(headers=["variant_id","status","rejection_reason","text"], interactive=False)
btn_gen.click(ui_generate, [campaign_id, brand, product, target, tone, k_variants, ng_words, value_per_conv], [table_gen])
with gr.Tab("2) Serve & Feedback"):
with gr.Row():
campaign_id2 = gr.Textbox(label="campaign_id", value="cmp-demo", scale=1)
hour = gr.Slider(0, 23, value=20, step=1, label="hour")
segment = gr.Textbox(label="segment (任意)")
btn_serve = gr.Button("Serve Ad(impressionを記録)")
served_vid = gr.Textbox(label="served variant_id", interactive=False)
served_text = gr.Textbox(label="served text", lines=6, interactive=False)
btn_serve.click(ui_serve, [campaign_id2, hour, segment], [served_vid, served_text])
with gr.Row():
btn_click = gr.Button("Clickを記録")
btn_conv = gr.Button("Conversionを記録")
msg = gr.Markdown()
btn_click.click(lambda cid, vid: ui_feedback(cid, vid, "click"), [campaign_id2, served_vid], [msg])
btn_conv.click(lambda cid, vid: ui_feedback(cid, vid, "conversion"), [campaign_id2, served_vid], [msg])
with gr.Tab("3) Report"):
campaign_id3 = gr.Textbox(label="campaign_id", value="cmp-demo")
btn_rep = gr.Button("更新")
table_rep = gr.Dataframe(headers=["variant_id","impressions","clicks","conversions","ctr","cvr","expected_value"], interactive=False)
btn_rep.click(ui_report, [campaign_id3], [table_rep])
with gr.Tab("4) Compliance Check"):
cand = gr.Textbox(label="チェックする文面", lines=5)
btn_chk = gr.Button("判定")
status = gr.Textbox(label="status")
reasons = gr.Textbox(label="reasons")
fixed = gr.Textbox(label="fixed (修正案)", lines=5)
btn_chk.click(ui_check, [cand], [status, reasons, fixed])
if __name__ == "__main__":
demo.queue().launch(server_name="0.0.0.0", server_port=7860)
|